Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1031-1038    DOI: 10.11720/wtyht.2020.0228
  广域电磁勘探技术应用专栏 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例
曾何胜(), 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰
湖北省地质局 地球物理勘探大队,湖北 武汉 430056
Researches on the application of wide field electromagnetic method to the complex electromagnetic interference environment:Exemplified by the geothermal exploration around a city
ZENG He-Sheng(), XU Yuan-Zhang, LIU Lei, TANG Bao-Shan, ZHANG Yi-Ran, LI Yi, CHEN Yu-Feng
Geophysical Exploration Party of Hubei Bureau of Geology,Wuhan 430056,China
全文: PDF(7112 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

广域电磁法通过人工接地场源建立谐变电磁场,向地下发送不同频率的交变电流,观测一个或多个电磁场分量,以广域视电阻率探测不同埋深地质目标体。该方法以大功率、强信号的人工场压制干扰场来提高信噪比,从而获得有效观测数据。在高压线、铁路、厂房、矿区、变电站、城市周边等复杂人文噪声干扰环境下,干扰场信号幅值达到几百甚至几千微伏,其强度大于广域电磁人工场信号,难以达到压制效果。本文以某市周边地热资源大深度勘探为例,对复杂电磁干扰环境下广域电磁法的应用进行研究,取得了质量良好的观测数据,经反演解释清晰刻画了地层、构造的空间展布特征,提供了两处地热资源有利区。该例为复杂电磁干扰环境下广域电磁法应用提供了方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾何胜
徐元璋
刘磊
唐宝山
张祎然
李义
陈宇峰
关键词 广域电磁法复杂电磁干扰环境地热资源大深度勘探    
Abstract

The wide field electromagnetic method establishes a harmonic electromagnetic field through an artificial ground field source,sends alternating currents of different frequencies to the ground,and surveys one or more electromagnetic field components to detect geological targets of different buried depths with wide field apparent resistivity.In this method,high power and strong artificial field is used to suppress the interference field to improve the signal-to-noise ratio.Under the environment of complex human noise interferences such as high voltage line,railway,factory building,mining area,substation and periphery of the city,the amplitude of interference field signal reaches hundreds or even thousands of microamplitude,and its intensity is greater than that of wide field electromagnetic artificial field signal,so it is difficult to achieve the suppression effect.In this paper,the large-scale exploration of geothermal resources around a city was taken as an example to study the application of wide field electromagnetic method in the complex electromagnetic interference environment,with good quality observation data obtained.This example provides a direction for the application of wide area electromagnetic method in the complex electromagnetic interference environment.

Key wordswide field electromagnetic method    complex electromagnetic interference environment    large-scale exploration of geothermal resources
收稿日期: 2020-05-07      出版日期: 2020-10-26
:  P631.4  
作者简介: 曾何胜(1987-),男,工程师,主要从事常规电法及电磁法的应用研究工作。Email: 360644941@qq.com
引用本文:   
曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
ZENG He-Sheng, XU Yuan-Zhang, LIU Lei, TANG Bao-Shan, ZHANG Yi-Ran, LI Yi, CHEN Yu-Feng. Researches on the application of wide field electromagnetic method to the complex electromagnetic interference environment:Exemplified by the geothermal exploration around a city. Geophysical and Geochemical Exploration, 2020, 44(5): 1031-1038.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0228      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1031
序号 地质层位 主要岩性 电阻率范围
/(Ω·m)
密度
/(g·cm-3)
磁化率
/(10-5SI)
1 白垩系K 粉细砂岩 10~500 2.404~2.559 0~10
2 三叠系T 白云岩、角砾状白云岩、泥晶灰岩 1851~3442 2.612~2.683 7~15
3 二叠系P 灰岩、生物屑灰岩、瘤状泥灰岩 1560~2582 2.674~2.742 12~17
4 石炭系C 灰岩、细晶白云岩、细砂岩、炭质页岩 368~2343 2.598~2.766 1~19
5 泥盆系D 石英砂岩 300~982 2.624~2.716 3~15
6 志留系S 粉砂岩、泥质粉砂岩 79~341 2.342~2.437 1~29
7 奥陶系O 生物屑灰岩、泥晶灰岩 998~2722 2.579~2.708 0~16
8 寒武系?2+3 细晶白云岩、泥质白云岩、白云质灰岩 974~3902 2.636~2.736 8~14
9 寒武系?1 粉砂岩、页岩、炭质页岩 12~224 2.426~2.584 10~17
Table 1  某市工区周边地热资源调查物性统计
Fig.1  采集点处分量示意
Fig.2  测线周边电磁干扰环境示意
Fig.3  工区内某点噪声水平评估曲线
Fig.4  工区某点人工场与天然场信号幅值曲线对比
Fig.5  工区干扰场幅值12小时监测曲线
Fig.6  工区某点在8:10~9:50、14:00~16:00时间区段人工场与天然场信号幅值曲线对比
Fig.7  工区某点在8:10~9:50、14:00~16:00时间区段人工电场幅值单支曲线
Fig.8  某市地热资源调查剖面1线地质模型
Fig.9  某市地热资源调查剖面1线广域电磁成果图
[1] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,41(3):1065-1072.
[1] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010,41(3):1065-1072.
[2] 米晓利, 朱永山, 周自涵, 等. 大功率建场测深法在油区高干扰区深层地热勘探方面的试验研究[J]. 工程地球物理学报, 2018,15(6):742-748.
[2] Mi X L, Zhu Y S, Zhou Z H, et al. The Experimental research of high power excited electric field sounding method in deep geothermal exploration of high interference region of oil field[J]. Chinese Journal of Engineering Geophysics, 2018,15(6):742-748.
[3] 年兴平. 抗干扰电法在可可塔勒铅锌矿区中的应用[J]. 新疆有色金属, 2019(1):77-78.
[3] Nian X P. Application of anti-interference electric method in Keotale lead zinc mine[J]. Xinjiang Nonferrous Metals, 2019(1):77-78.
[4] 武军杰, 邓晓红, 张杰, 等. 强干扰区电磁法勘探抗干扰措施及效果分析[J]. 物探化探计算技术, 2013,35(1):40-46.
[4] Wu J J, Deng X H, Zhang J, et al. Anti interference measures and effect analysis of electromagnetic exploration in strong interference area[J]. Computing Techniques for Geophysical and Geochmical Exploration, 2013,35(1):40-46.
[5] 黄昌庆. 基于强干扰区电磁法勘探抗干扰措施及效果探讨[J]. 世界有色金属, 2018(11):241-242.
[5] Huang C Q. A discussion on anti-jamming measures and effects based on electromagnetic interference method in strong jamming area[J]. World Nonferrous Metals, 2018(11):241-242.
[6] 黄敏, 张开元. 强干扰区可控源音频大地电磁勘探处理研究[J]. 中国西部科技, 2015,14(1):26-28,34.
[6] Huang M, Zhang K Y. The explore on CSAMT data processing affected by strong electromagnetic disturbance[J]. Science and Technology of West China, 2015,14(1):26-28,34.
[7] 封绍武, 刘文增, 杨晓东. 强干扰区瞬变电磁法勘查采空区效果[J]. 物探与化探, 2010,34(2):195-197.
[7] Feng S W, Liu W Z, Yang X D. The effectiveness of applying the transient electromagnetic method in high interference area to the exploration of mined out areas[J]. Geophysical and Geochemical Exploration, 2010,34(2):195-197.
[8] 汤井田, 徐志敏, 肖晓, 等. 庐枞矿集区大地电磁测深噪声的影响规律[J]. 地球物理学报, 2012,55(12):4147-4159.
[8] Tang J T, Xu Z M, Xiao X, et al. Effect rules of strong noise on magneto telluric (MT) sounding in the Luzong ore cluster area[J]. Chinese Journal of Geophysics, 2012,55(12):4147-4149.
[9] 白登海, 王立凤, 孙洁, 等. 城市活断层探测中电磁噪音和环境干扰对浅层电磁方法的影响[J]. 地震地质, 2002,24(4):549-556.
[9] Bai D H, Wang L F, Sun J, et al. Effects of urban noise on electromagnetic methods[J]. Seismology and Geology, 2002,24(4):549-556.
[10] 胡耀星. 综合电法在干扰区石墨矿勘查中的应用[J]. 中国非金属矿工业导刊, 2015(4):29-33.
[10] Hu Y X. Application of comprehensive electrical method in the jamming area of graphite ore deposit[J]. China Non-metallic Minerals Industry, 2015(4):29-33.
[11] 颜廷杰, 王赛昕, 马一行, 等. 人文干扰对电法勘探的影响及应对措施[J]. 矿产勘查, 2016,7(4):634-639.
[11] Yan T J, Wang S X, Ma Y X, et al. Influence of human interference on application of electrical prospecting and corresponding anti-interference measures[J]. Mineral Exploration, 2016,7(4):634-639.
[12] 黄力军. 物探方法在地热调查中的应用效果[J]. 物探与化探, 1988,12(2):129-133.
[12] Huang L J. The application result of geophysical method in geothermal survey[J]. Geophysical and Geochemical Exploration, 1988,12(2):129-133.
[13] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[13] He J S. Wide-field electromagnetic method and pseudo-random signal electrical method[M]. Beijing: Higher Education Press, 2010.
[14] 李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探, 2015,39(5):967-972.
doi: 10.11720/wtyht.2015.5.15
[14] Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015,39(5):967-972.
doi: 10.11720/wtyht.2015.5.15
[15] 鲍力知. 广域电磁法的主要特点[J]. 贵州地质, 2013,30(1):9-13.
[15] Bao L Z. Main features of the wide-field electromagnetic method[J]. Guizhou Geology, 2010,30(1):9-13.
[16] 郑冰. 过渡区条件下广域电磁法探测深度问题的理论研究[J]. 物探与化探, 2016,40(1):78-82.
doi: 10.11720/wtyht.2016.1.14
[16] Zheng B. A theoretical study of the detection depth of WFEM under the condition of transition zone[J]. Geophysical and Geochemical Exploration, 2016,40(1):78-82.
doi: 10.11720/wtyht.2016.1.14
[1] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[2] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[3] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[4] 李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
[5] 李麒麟, 李荣亮, 苏海伦, 刘洋, 曹自才. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5): 999-1008.
[6] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[7] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[8] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[9] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[10] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[11] 王洪军, 田红军, 贺春艳, 刘光迪. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058.
[12] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[13] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[14] 蒋永芳, 李芳书, 曹渊, 夏灵云, 张婷. 广域电磁法在金属矿勘探中的应用研究和探讨[J]. 物探与化探, 2020, 44(5): 1073-1077.
[15] 梁维天, 李勇, 王东波, 李浩, 袁圣, 冯家新, 孙文. 辽东南金属矿勘查中广域电磁法应用效果[J]. 物探与化探, 2020, 44(5): 1078-1084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com