Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1025-1030    DOI: 10.11720/wtyht.2020.0198
  广域电磁勘探技术应用专栏 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例
田红军1,2(), 尹文斌1,2, 刘光迪1,2, 蒋永芳1,2, 游文兵1,2
1.湖南继善高科技有限公司, 湖南 长沙 410208
2.湖南省深地资源电磁法勘探工程技术研究中心,湖南 长沙 410208
The application and evaluation of the wide field electromagnetic method in the low resistance coverage area-Exemplified by Zhongmu area of Henan Province
TIAN Hong-Jun1,2(), YIN Wen-Bin1,2, LIU Guang-Di1,2, JIANG Yong-Fang1,2, YOU Wen-Bing1,2
1.Hunan Geosun High-Tech Co., Ltd., Changsha 410208, China
2.Hunan Deep Earth Resources Electromagnetic Exploration Engineering Technology Research Center,Changsha 410208, China
全文: PDF(4631 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在分析和总结河南中牟含气页岩层电阻率等物理性征基础上,将广域电磁法勘探技术用于南华盆地低阻覆盖区页岩气探测,获得工作区地下5 km内地层电阻率分布规律和特征,查明了工作区的构造展布,同时揭示了以二叠系太原组、山西组以及上、下石盒子组为主要目的层的含气页岩发育特征。此次探测工作表明,在低阻覆盖区广域电磁法是获取南华盆地深部含气页岩埋深和分布范围的有效探测手段,可为后期有利区带评价、区块优选页岩气层提供地球物理参数。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田红军
尹文斌
刘光迪
蒋永芳
游文兵
关键词 低阻覆盖区南华盆地广域电磁法含气页岩    
Abstract

Based on an analysis and summary of the physical properties of the gas-bearing shale layer in Zhongmu area of Henan Province, the authors used the wide-area electromagnetic exploration technology to detect shale gas in the low-resistance coverage area of the Nanhua Basin, obtained the distribution regularity and characteristics of the stratigraphic resistivity within 5km under the work area, and ascertained the structural distribution of the work area. In addition, the development characteristics of gas-bearing shales were revealed, with the main target layers being the Permian Taiyuan Formation, Shanxi Formation, Upper Shihezi Formation and Lower Shihezi Formation. The results show that, in the low-resistance coverage area, the wide-field electromagnetic method is an effective detection method to obtain the buried depth and distribution range of deep gas-bearing shale in the Nanhua Basin, providing geophysical parameters for the evaluation of favorable zones in the later period and the optimization of shale gas layers in the block.

Key wordslow resistance coverage area    Nanhua basin    wide field electromagnetic method    gas-bearing shale
收稿日期: 2020-03-20      出版日期: 2020-10-26
:  P631  
作者简介: 田红军(1988-),男,2015年毕业于中南大学,主要研究方向为电磁法理论与数据处理。Email: 821327420@qq.com
引用本文:   
田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
TIAN Hong-Jun, YIN Wen-Bin, LIU Guang-Di, JIANG Yong-Fang, YOU Wen-Bing. The application and evaluation of the wide field electromagnetic method in the low resistance coverage area-Exemplified by Zhongmu area of Henan Province. Geophysical and Geochemical Exploration, 2020, 44(5): 1025-1030.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0198      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1025
层号 顶深/m 底深/m 层厚/m 有效厚度/m RLLD/(Ω·m) RLLS/(Ω·m) MFSL/(Ω·m)
第四系 0 197.8 197.8 197.8
明化镇组 197.8 873 675.2 675.2
馆陶组 873 1482.8 609.8 609.8 5.556 3.797 2.812
和尚沟组(刘家沟) 1482.8 1893.3 410.5 410.5 91.44 84.863 62.046
孙家沟组 1893.3 2071.1 177.8 177.8 52.055 49.394 34.502
平顶山组 2071.1 2174.1 103 103 214.114 202.666 50.647
上石盒子组 2174.1 2495.2 321.1 321.1 24.398 23.361 10.704
下石盒子组 2495.2 2798.4 303.2 303.2 17.75 16.74 8.407
山西组 2798.4 2889.8 91.4 91.4 49.443 45.289 21.062
太原组 2889.8 2971.8 82 82 646.303 301.79 21.097
本溪组 2971.8 2987.8 16 16 2381.969 2137.384 193.5
马家沟组 2987.8 3020.8 33 33 183.625 170.723
Table 1  牟1井电测井资料
Fig.1  广域电磁法正演曲线及异常百分比曲线
a—视电阻率曲线对比;b—异常幅度百分比
Fig.2  广域电磁法测线施工布设示意
a—广域电磁法野外施工示意;b—测线部署
Fig.3  L55.4线综合成果断面
a—拟地震断面;b—反演成果及地质解释断面
Fig.4  L54线综合成果断面
a—拟地震断面;b—反演成果及地质解释断面
[1] 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008,28(6):136-140.
[1] Zhang J C, Xu B, Nie H K, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008,28(6):136-140.
[2] 刘德良, 曹高社, 谈迎. 华北盆地南缘发现寒武系烃源岩及油显示[J]. 石油学报, 2000,9(5):10.
[2] Liu D L, Cao G S, Tan Y. Discovery of Cambrian source rocks and oil in the south margin of north China basin[J]. Acta Petrolei Sinica, 2000,9(5):10.
[3] 潘仁芳, 黄晓松. 页岩气及国内勘探前景展望[J]. 中国石油勘探, 2009,14(3):1-5.
[3] Pan R F, Huang X S. Shale gas and its exploration prospects in China[J]. China Petroleum Exploration, 2009,14(3):1-5.
[4] 刘振武, 撒利明, 杨晓, 等. 页岩气勘探开发对地球物理技术的需求[J]. 石油地球物理勘探, 2011,46(5):810-818.
[4] Liu Z W, Sa L M, Yang X, et al. Needs of geophysical technologies for shale gas exploration[J]. OGP, 2011,46(5):810-818.
[5] 宋慧波, 胡斌, 张璐, 等. 河南省太原组沉积时期岩相古地理特征[J]. 沉积学报, 2011,29(5):876-888.
[5] Song H B, Hu B, Zhang L, et al. Characteristics of lithofacies paleogeography of the Taiyuan formation sedimentary period,Henan Province[J]. Acta Sedimentologica Sinica, 2011,29(5):876-888.
[6] 魏晓亮, 张金川, 党伟, 等. 牟页1井海陆过渡相页岩发育特征及其含气性[J]. 科学技术与工程, 2016,9(26) : 42-50.
[6] Wei X L, Zhang J C, Dang W, et al. Characteristics and gas bearing property of transitional shale in well Mouye 1[J]. Science Technology and Engineering, 2016,9(26) : 42-50.
[7] 解东宁. 南华北盆地晚古生代以来构造沉积演化与天然气形成条件研究[D]. 西安:西北大学, 2007.
[7] Xie D N. Tectonic and sedimentary evolution and natural gas formation conditions in south China basin since late Paleozoic[D]. Xi’an: Northwest University, 2007.
[8] 徐汉林, 赵宗举, 杨以宁, 等. 南华北盆地构造格局及构造样式[J]. 地球学报, 2003,24(1):27-33.
[8] Xu H L, Zhao Z J, Yang Y N, et al. Structural pattern and structural style of the Southern North China Basin[J]. Acta Geoscientica Sinica, 2003,24(1):27-33.
[9] 成海燕, 李安龙, 龚建明. 陆相烃源岩评价参数浅析[J]. 海洋地质动态, 2008,24(2):6-10.
[9] Cheng H Y, Li A L, Gong J M. Analysis of continental hydrocarbon source rock evaluation parameters[J]. Marine Geology Frontiers, 2008,24(2):6-10.
[10] 朱晓军, 蔡进功. 泥质烃源岩的比表面与有机质关系研究进展及意义[J]. 石油与天然气地质, 2012,33(3):375-384.
doi: 10.11743/ogg20120306
[10] Zhu X J, Cai J G. Progress and significant of research on relation between specific surface area and organic matter in argillaceous source rocks[J]. Oil and Gas Geology, 2012,33(3):375-384.
[11] 陶士振, 刘德良, 李昌伟, 等. 华北陆块新区新层页岩气潜在勘探新领域——南华北下寒武统马店组烃源岩及其含气系统[J]. 天然气地球科学, 2014,25(11):1767-1780.
doi: 10.11764/j.issn.1672-1926.2014.11.1767
[11] Tao S Z, Liu D L, Li C W, et al. Potential new field of shale gas exploration in the new layer of north China block-source rocks and their gas bearing system of the lower Cambrian matdian formation in the north of Nanhua[J]. Natural Gas Geoscience, 2014,25(11):1767-1780.
doi: 10.11764/j.issn.1672-1926.2014.11.1767
[12] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,41(3):1065-1072.
[12] He J S. Research on wide-area electromagnetic sounding method[J]. Journal of Central South University :Natural Science Edition, 2010,41(3):1065-1072.
[13] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[13] He J S. Wide-area electromagnetic method and pseudo-random signal electricity method [M]. Beijing: Higher Education Press, 2010.
[14] 董宁, 许杰, 孙赞东, 等. 泥页岩脆性地球物理预测技术[J]. 石油地球物理勘探, 2013,48(s1):69-71.
[14] Dong N, Xu J, Sun Z D, et al. Shale brittleness prediction by geophysical methods[J]. OGP, 2013,48(s1):69-71.
[15] 金之钧. 中国海相碳酸盐岩层系油气勘探特殊性问题[J]. 地学前缘, 2005,12(3):15-22.
[15] Jin Z J. Particularity of petroleum exploration on marine carbonate in China sedimentary basins[J]. Earth Science Frontiers, 2005,12(3):15-22.
[16] 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012,19(2):212-220.
[16] Ding W L, Li C, Li C Y, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Sience Frontiers, 2012,19(2):212-220.
[17] 朱裕振, 许聪悦. 广域电磁法深部找矿实验效果[J]. 物探与化探, 2011,35(6):743-746.
[17] Zhu Y Z, Xu C Y. Experimental results of deep prospecting by wide-area electromagnetic method[J]. Geophysical and Geochemical Exploration, 2011,35(6):743-746.
[18] 周必文, 凌帆. E-Ex广域电磁法探测火山岩油气藏的实验研究[J]. 油气地球物理, 2012,30(3):56-59.
[18] Zhou B W, Ling F. Experimental study of E-Ex wide-field electromagnetic method for detecting volcanic oil and gas reservoirs[J]. Oil and Gas Geophysics, 2012,30(3):56-59.
[1] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[2] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[3] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[4] 李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
[5] 李麒麟, 李荣亮, 苏海伦, 刘洋, 曹自才. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5): 999-1008.
[6] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[7] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[8] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[9] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[10] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[11] 王洪军, 田红军, 贺春艳, 刘光迪. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058.
[12] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[13] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[14] 蒋永芳, 李芳书, 曹渊, 夏灵云, 张婷. 广域电磁法在金属矿勘探中的应用研究和探讨[J]. 物探与化探, 2020, 44(5): 1073-1077.
[15] 梁维天, 李勇, 王东波, 李浩, 袁圣, 冯家新, 孙文. 辽东南金属矿勘查中广域电磁法应用效果[J]. 物探与化探, 2020, 44(5): 1078-1084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com