Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 863-869    DOI: 10.11720/wtyht.2020.1306
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
弥河下游浅埋古河道的勘探识别
郭龙凤1,2(), 陈德培1, 魏长勇3, 王刚1()
1.山东农业大学 水利土木工程学院,山东 泰安 271000
2.水发规划设计有限公司,山东 济南 250000
3.山东省泰安市水文局,山东 泰安 271000
Exploration identification of the shallow-buried palaeochannel in the lower reaches of the Mihe River
Long-Feng GUO1,2(), De-Pei CHEN1, Chang-Yong WEI3, Gang WANG1()
1. College of Water Conservancy & Civil Engineering,Shandong Agricultural University,Tai'an 271000,China
2. Shuifa Planning and Designing Co.,Ltd.,Jinan 250000,China
3. Shandong Tai'an Hydrology Bureau,Tai'an 271000,China
全文: PDF(2527 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在分析研究区古河道成因、地质条件、地球物理特征的基础上,采用电测深法结合水文地质钻探对区内古河道进行勘探。电测深曲线及其一维反演表明,古河道呈现相对高阻特征,平均厚度23 m。从电阻率这一综合电性参数的角度分析了探测范围内古河道的空间分布特点:整体呈河流相沉积,岩性以细砂、中粗砂和砂砾石为主。电阻率图像反映的古河道空间特征与钻孔资料揭露的古河道特性基本一致。本次勘探工作重建了研究区第四系地质剖面,为后期古河道资源的合理利用和保护奠定了基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭龙凤
陈德培
魏长勇
王刚
关键词 弥河古河道电测深法一维反演电阻率    
Abstract

Based on the analysis of the origin, geological conditions and geophysical characteristics of the ancient river channel in the study area, the electrical sounding method and hydrogeological drilling are used to explore the ancient river channel in the area. The electrical sounding curve and its one-dimensional inversion show that the ancient channel is characterized by relatively high resistivity with an average thickness of 23m.From the perspective of resistivity, i.e., the comprehensive electrical characteristic parameter, the authors analyzed the spatial distribution characteristics of the palaeochannel within the detection range. The palaeochannel is deposited as a river facies on the whole,and the lithology mainly includes fine sand,medium-coarse sand and sand gravel. The spatial characteristics of the palaeochannel reflected in the resistivity image are basically consistent with the characteristics of palaeochannel revealed by the borehole data. This exploration work has reconstructed the Quaternary geological section of the study area, and laid a solid foundation for rational utilization and protection of the palaeochannel resources.

Key wordsMihe River    palaeochannel    vertical electrical sounding    one-dimensional inversion    resistivity
收稿日期: 2019-06-05      出版日期: 2020-08-28
:  P631  
基金资助:国家自然科学基金项目(41202174);山东省自然科学基金项目(2014ZRB019D0)
通讯作者: 王刚
作者简介: 郭龙凤(1993-),女,硕士研究生,研究方向:地下水数值模拟、水文地球物理。Email:837739237@qq.com
引用本文:   
郭龙凤, 陈德培, 魏长勇, 王刚. 弥河下游浅埋古河道的勘探识别[J]. 物探与化探, 2020, 44(4): 863-869.
Long-Feng GUO, De-Pei CHEN, Chang-Yong WEI, Gang WANG. Exploration identification of the shallow-buried palaeochannel in the lower reaches of the Mihe River. Geophysical and Geochemical Exploration, 2020, 44(4): 863-869.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1306      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/863
Fig.1  研究区地理位置和电测深测点分布
Fig.2  研究区第四纪岩层电性参数统计
序号 1 2 3 4 5 6 7 8 9 10 11 12 13
AB/2 4 6 9 2 16 20 25 32 40 50 60 74 90
MN/2 1.5 1.5 1.5 1.5 1.5 1.5 4 4 4 4 6 6 6
Table 1  电测深数据采集极距
Fig.3  电测深法视电阻率曲线及其一维反演电阻率
Fig.4  勘探异常区的视电阻率拟断面
测深点编号 表层 中层 底层
ρ/(Ω·m) 埋深/m ρ/(Ω·m) 厚度/m ρ/(Ω·m) 埋深/m
20# 19 6 39 24 19 30
21# 17 6 56 21 21 27
22# 15 7 73 27 34 34
23# 18 7 102 27 47 34
24# 17 6 104 24 44 30
25# 19 6 102 21 39 27
26# 19 5 82 19 21 24
27# 15 6 60 21 23 27
28# 20 6 40 24 20 30
均值 18 6 73 23 30 29
Table 2  异常区一维反演的岩层电阻率—深度统计
Fig.5  古河道电测深解释成果及钻孔岩芯柱状图
[1] 吴忱, 许清海, 赵明轩. 世界所有大河都有埋藏古河道[J]. 地理学与国土研究, 1992,8(2):29-34.
[1] Wu C, Xu Q H, Zhao M X. All rivers in the world have buried palaeochannel[J]. Geography and Geo-Information Science, 1992,8(2):29-34.
[2] 吴忱, 朱宣清, 何乃华, 等. 华北平原古河道研究[M]. 北京: 中国科学技术出版社, 1991:41-132.
[2] Wu C, Zhu X Q, He N H, et al. The research of palaeochannel in the North China Plain [M]. Beijing: China Science and Technology Press , 1991:41-132.
[3] 赵艳霞, 徐全洪, 刘方圆, 等. 近20年来中国古河道研究进展[J]. 地理科学进展, 2013,32(1):3-19.
doi: 10.11820/dlkxjz.2013.01.001
[3] Zhao Y X, Xu Q H, Liu F Y, et al. Progresses of palaeochannel studies in China in the past 20 years[J]. Progress in Geography, 2013,32(1):3-19.
doi: 10.11820/dlkxjz.2013.01.001
[4] Henk J A, Berendsen , Esther S. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, the Netherlands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,(161):311-335.
[5] 金永念, 季克其, 仇慎平, 等. 江苏阴平、华冲地区第四纪古河道电性特征研究[J]. 水文地质工程地质, 2004(3):99-101.
[5] Jin Y N, Ji K Q, Qiu S P, et al. Electrical property of Quaternary ancient watercourse of Yinping and Huachong area, Jiangsu Province[J]. Hydrogeology & Engineesing Geology, 2004(3):99-101.
[6] 付新建, 刘克宇, 李改梅. 对称四极电阻率测深曲线在古河道带及河间带的电性特征[J]. 地下水, 2008,30(5):107.
[6] Fu X J, Liu K N, Li G M. The electrical characteristics of symmetrical four resistivity sounding curves in the ancient river belt and interchannel areas[J]. Groundwater, 2008,30(5):107.
[7] 郭高轩, 刘文臣, 辛宝东, 等. 利用电测深法探测泃河与错河古河道[J]. 工程勘察, 2010,(4):87-90.
[7] Guo G X, Liu W C, Xin B D, et al. Old course detection of Juhe and Cuohe river by electric sounding method[J]. Geotechnical Investigation & Surveying, 2010,(4):87-90.
[8] 郭龙凤, 黄少文, 李亮亮, 等. 综合物探方法在古河道型地下水库工程建设中的应用研究[J]. 地球物理学进展, 2018,33(3):1205-1212.
[8] Guo L F, Huang S W, Li L L, et al. Application and research of integrated geophysical method in construction of palaeochannel groundwater reservoir[J]. Progress in Geophysics, 2018,33(3):1205-1212.
[9] 孟庆海, 韩美, 赵明华, 等. 弥河冲洪积扇和古河道初步研究[J]. 山东师大学报:自然科学版, 1999,14(1):46-50.
[9] Meng Q H, Han M, Zhao M H, et al. A preliminary Study of the Mihe River alluvial diluvial fan and the palaeochannels[J]. Journal of Shandong Normal University:Natural Science, 1999,14(1):46-50.
[10] 韩美. 莱州湾地区海水入侵与地貌的关系[J]. 海洋与湖泊, 1996,27(4):414-420.
[10] Han M. Relationship between the seawater Intrusion and landforms in Laizhou Bay area[J]. Oceanologia et Limnologia Sinica, 1996,27(4):414-420.
[11] 李道高, 赵明华, 韩美, 等. 莱州湾南岸平原浅埋古河道带研究[J]. 海洋地质与第四纪地质, 2000,20(1):23-29.
[11] Li D G, Zhao M H, Han M, et al. A study of the shallowly-buried palaeochannel zones in the south coast plain of the Laizhou Bay[J]. Marine Geology & Quaternary Geology, 2000,20(1):23-29.
[12] 韩美, 赵明华, 李道高, 等. 莱州湾南岸平原古河道及其与海(咸)水入侵关系研究[J]. 自然灾害学报, 1999,8(2):73-80.
[12] Han M, Zhao M H, Li D G, et al. Study on the ancient channels and the relationship between the ancient channels and the sea (salt) water intrusion of the south coastal plain of Laizhou Bay[J]. Journal of Natural Disasters, 1999,8(2):73-80.
[13] 于得芹, 蒙永辉. 寿光市水文地质特征浅析[J]. 环境地质, 2014,30(8):30-33.
[13] Yu D Q, Meng Y H. Analysis on hydrogeological characteristics of Shouguang city[J]. Environmental Geology, 2014,30(8):30-33.
[14] 刘恩峰. 莱州湾南岸滨海平原沉积环境变化与咸水入侵关系研究[D]. 济南:山东师范大学, 2002.
[14] Liu E F. The relation research of the sedimentary environmental transformation and saline water encroachment in Laizhou Bay south sea shore plain[D]. Jinan: Shandong Normal University, 2002.
[15] Cardarelli E, Donno G D. Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (central Italy)[J]. Journal of Applied Geophysics, 2017,141:77-87.
[16] Martínez Moreno F J, Monteiro Santos F A, Bernardo I, et al. Identifying seawater intrusion in coastal areas by means of 1D and Quasi-2D joint inversion of TDEM and VES data[J]. Journal of Hydrology, 2017,552:609-619.
[17] 何玉海. 高密度电法在莱州湾海水入侵调查中的研究与应用[J]. 海洋环境科学, 2016,35(2):301-305.
[17] He Y H. Research and application of High-density resistance method in seawater invasion investigation of Laizhou Bay[J]. Marine Environmental Science, 2016,35(2):301-305.
[1] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[2] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[3] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[4] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[5] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[6] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[7] 范祥泰, 张志厚, 苏建坤, 丁可, 廖晓龙, 石泽玉, 刘鹏飞. 改进电测深法探测山区深埋隧道隐伏构造[J]. 物探与化探, 2021, 45(3): 793-799.
[8] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[9] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[10] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[11] 李展辉, 杨淼鑫, 曹学峰. 瞬变电磁法感应电压场与B场探测效果的数值计算对比分析[J]. 物探与化探, 2021, 45(1): 114-126.
[12] 罗维斌, 丁志军, 高曙德, 张星. 测量磁场水平分量Hy的电性源广域电磁测深法[J]. 物探与化探, 2021, 45(1): 46-56.
[13] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[14] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[15] 李飞, 谭捍东, 孟庆敏, 吴俊彦, 丁志强. 二连—东乌旗地区固定翼三频航电数据反演方法应用对比研究[J]. 物探与化探, 2020, 44(5): 1172-1182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com