Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 582-590    DOI: 10.11720/wtyht.2020.1416
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
利用IGRF模型计算全张量地磁梯度
钟炀, 管彦武, 石甲强, 肖锋
吉林大学 地球探测科学与技术学院,吉林 长春 130026
The calculation method of full tensor geomagnetic gradient based on IGRF model
Yang ZHONG, Yan-Wu GUAN, Jia-Qiang SHI, Feng XIAO
College of Geo-Exploration Science and Technology,Jilin University,Changchun 130026,China
全文: PDF(3448 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

国际地磁参考场(IGRF)是一种描述地球主磁场的国际通用模型。目前利用该模型能够计算任意点位的地磁七要素,但随着航空全张量磁测技术的发展,对地球主磁场的全张量磁梯度数据有着迫切的需求。笔者梳理了IGRF模型的计算原理并进一步推导出球谐展开的全张量磁梯度表达式,实现了任意给定点位地磁场七要素和全张量的计算,并用地磁七要素与美国国家海洋和大气管理局(NOAA)网站计算数据进行对照,结果准确可靠。绘制了某地区地磁场的全张量磁梯度等值线图,结果满足Laplace方程,为航空全张量磁梯度测量中选择学习飞行工区和飞行高度提供了理论依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟炀
管彦武
石甲强
肖锋
关键词 IGRF全张量磁梯度球谐分析勒让德多项式    
Abstract

The international geomagnetic reference field (IGRF) is a general international model for describing the earth’s main magnetic field. At present,this model can be used to calculate the seven elements of geomagnetic field at any point. However,with the development of aeronautical full tensor magnetic measurement technology,there is an urgent need for full tensor geomagnetic gradient data. In this paper,the calculation principle of the IGRF model is summarized and the expression of the full tensor geomagnetic gradient with spherical harmonic expansion is derived. The calculation of the seven elements of geomagnetic field and the full tensor geomagnetic gradient at any given point is realized. Comparing with the calculated data from the website of the National Oceanic and Atmospheric Administration of the United States (NOAA),the results are accurate and reliable. The contour map of the full tensor geomagnetic field in a region is drawn, and the results were in accordance with the Laplace equation. It provides the theoretical basis for the selection of learning flight working area and flight height in the aeromagnetic survey.

Key wordsIGRF    FTMG    spheric harmonic analysis    legendre polynomials
收稿日期: 2019-09-02      出版日期: 2020-06-24
ZTFLH:  P631  
基金资助:国家重点研发计划“航空磁场测量技术系统研制”(2017YFC0602000)
作者简介: 钟炀(1995-),男,吉林长春人,硕士研究生,主要研究方向为地球探测与信息技术。Email: zhongyang18@mails.jlu.edu.cn
引用本文:   
钟炀, 管彦武, 石甲强, 肖锋. 利用IGRF模型计算全张量地磁梯度[J]. 物探与化探, 2020, 44(3): 582-590.
Yang ZHONG, Yan-Wu GUAN, Jia-Qiang SHI, Feng XIAO. The calculation method of full tensor geomagnetic gradient based on IGRF model. Geophysical and Geochemical Exploration, 2020, 44(3): 582-590.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1416      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I3/582
Fig.1  地理坐标系与地心坐标系
n Pn(cosθ) Pn(v)
0 1 1
1 cosθ μ
2 (3cos2θ+1)/4 (3v2-1)/2
3 (5cos3θ+3cosθ)/8 (5v3-3v)/2
Table 1  0~3阶勒让德多项式
n m 伴随勒让德多项式
Pn,m(cosθ)
高斯规格化伴随勒让德多项式
Pn,m(cosθ)
施密特拟规格化伴随勒让德多项式
Pnm(cosθ)
0 0 1 1 1
1 0 cosθ cosθ cosθ
1 1 sinθ sinθ sinθ
2 0 12(3cos2θ-1) 16(3cos2θ-1) 12(3cos2θ-1)
2 1 3cosθsinθ 12cosθsinθ 3cosθsinθ
2 2 3sin2θ 12sin2θ 32sin2θ
3 0 12cosθ(5cos2θ-3) 130cosθ(5cos2θ-3) 12cosθ(5cos2θ-3)
3 1 32sinθ(5cos2θ-1) 130sinθ(5cos2θ-1) 38sinθ(5cos2θ-1)
3 2 15cosθsin2θ 16cosθsin2θ 154cosθsin2θ
3 3 15sin3θ 16sin3θ 58sin3θ
Table 2  0~3阶伴随勒让德多项式
Fig.2  总地磁场B等值线
Fig.3  地磁场偏角D(a)及倾角I(b)等值线
Fig.4  地磁场三分量(a)Bx(b)By(c)Bz等值线
Fig.5  全张量地磁梯度等值线
Fig.6  主对角线上3个张量分量之和等值线
城市 来源 Bx/nT By/nT Bz/nT Bh/nT B/nT D I
成都市 本文计算 33866.2 -1213.9 37855.4 33887.9 50807.6 -2.0528 48.1652
NOAA 33866.2 -1213.9 37855.4 33887.9 50807.7 -2.0529 48.1652
自贡市 本文计算 34644.5 -1268.7 36051.7 34667.6 50015.7 -2.0972 46.1212
NOAA 34644.5 -1268.7 36051.7 34667.7 50015.8 -2.0973 46.1212
泸州市 本文计算 34909.9 -1334.7 35359.9 34935.3 49707.1 -2.1895 45.346
NOAA 34909.9 -1334.7 35359.9 34935.4 49707.2 -2.1895 45.346
德阳市 本文计算 33580.9 -1266.4 38443.8 33604.7 51060.8 -2.1597 48.8424
NOAA 33580.9 -1266.4 38443.8 33604.8 51060.8 -2.1597 48.8424
最大绝对误差 0 0 0 0.1 0.1 0.0001 0
Table 3  测区内点位磁场值
[1] Barraclough D R, Harwood J M, Leaton B R, et al. A definitive model of the geomagnetic field and its secular variation for 1965—I.Derivation of model and comparison with the IGRF[J]. Geophysical Journal International, 1978,55(1):111-121.
doi: 10.1111/j.1365-246X.1978.tb04750.x
[2] 安振昌, 徐元芳. 球谐分析与国际地磁参考场[J]. 地震地磁观测与研究, 1982,3(5):22-26.
[2] An Z C, Xu Y F. Spherical harmonic analysis and international geomagnetic reference[J]. Seismological and Geomagnetic Observation and Research, 1982,3(5):22-26.
[3] 安振昌, 徐元芳. 利用中国地区的资料检验全球地磁场的球谐模式[J]. 地震地磁观测与研究, 1983,4(5):1-13.
[3] An Z C, Xu Y F. The spherical harmonic model of the global geomagnetic field is tested with data from China[J]. Seismological and Geomagnetic Observation and Research, 1983,4(5):1-13.
[4] 徐元芳, 王月华, 安振昌. IGRF1980的检验[J]. 地震地磁观测与研究, 1986,7(2):10-17.
[4] Xu Y F, Wang Y H, An Z C. IGRF1980 inspection[J]. Seismological and Geomagnetic Observation and Research, 1986,7(2):10-17.
[5] 安振昌. 第四代国际地磁参考场[J]. 地震地磁观测与研究, 1986,7(3):20-25.
[5] An Z C. Fourth generation international magnetic reference field[J]. Seismological and Geomagnetic Observation and Research, 1986,7(3):20-25.
[6] 安振昌, 王月华, 徐元芳, 等. IGRF的计算与评价[J]. 物探化探计算技术, 1988,10(2):93-99.
[6] An Z C, Wang Y H, Xu Y F, et al. Calculation and evaluation of IGRF[J]. Computing Techniques for Giophysical and Geochenical Exploration, 1988,10(2):93-99.
[7] 安振昌. 利用 IGRF 计算地磁台年均值的方法[J]. 地震地磁观测与研究, 1987,8(5):15-18.
[7] An Z C. Method of calculating the annual mean values of observatory by using IGRF[J]. Seismological and Geomagnetic Observation and Research, 1987,8(5) : 15-18.
[8] 安振昌. 利用第七代IGRF计算1995.0年中国及邻区地磁场[J]. 地球物理学进展, 1997,12(3):22-26.
[8] An Z C. Geomagnetic field over China and adjacent at epoch 1995.0derived from the seventh generation IGRF[J]. Progress in Geophysics, 1997,12(3):22-26.
[9] 安振昌, 王月华. 1900~2000年非偶极子磁场的全球变化[J]. 地球物理学报, 1999,42(2):169-177.
[9] An Z C, Wang Y H. Global changes of the non-dipole magnetic fields for 1900—2000[J]. Chinese Journal of Geophysics, 1999,42(2):169-177.
[10] 林云芳, 曾小苹, 郭启华. 东亚地区地磁非偶极场长期变化的分析[J]. 地球物理学报, 1985,28(5):482-496.
[10] Lin Y F, Zeng X P, Guo Q H. Analysis of secular variations of non-dipole geomagnetic field in east asia[J]. Chinese Journal of Geophysics, 1985,28(5):482-496.
[11] Matteo N A, Morton Y T. Ionosphere geomagnetic field: Comparison of IGRF model prediction and satellite measurements 1991—2010[J]. Radio Science, 2011,46(4):1-10.
[12] Xu W Y. Revision of the high-degree Gauss coefficients in the IGRF 1945—1955 models by using natural orthogonal component analysis[J]. Earth,Planets and Space, 2002,54(7):753-761.
doi: 10.1186/BF03351728
[13] Maus S, Fairhead D, Hemant K, et al. A near-surface geomagnetic field model to spherical harmonic degree 720[C]// AGU Fall Meeting Abstracts, 2006.
[14] 张素琴, 杨冬梅, 李琪, 等. 中国部分地磁台站年均值与IGRF模型一致性分析[J]. 地震地磁观测与研究, 2008,29(2):42-49.
[14] Zhang S Q, Yang D M, Li Q, et al. The consistence analysis of IGRF model value and annual mean value of some geomagnetic observatories in China[J]. Seismological and Geomagnetic Observation and Research, 2008,29(2):42-49.
[15] Molina F, de Santis A. Considerations and proposal for a best utilization of IGRF over areas including a geomagnetic observatory[J]. Physics of the Earth and Planetary Interiors, 1987,48(3-4):379-385.
doi: 10.1016/0031-9201(87)90162-2
[16] 任国泰. 关于东亚大陆磁场的研究[J]. 地球物理学报, 1981(4):404-414.
[16] Ren G T. A comparison between regional model and global model of the geomagnetic field[J]. Geophysical and Geochemical Exploration, 1981,?(4):404-414.
[17] 安振昌. 地磁场区域模型与全球模型的比较和讨论[J]. 物探与化探, 1991,15(4):248-254.
[17] An Z C. A comparison between regional model and global model of the geomagnetic field[J]. Geophysical and Geochemical Exploration, 1991,15(4):248-254.
[18] Smart D F, Shea M A, Flückiger E O. Magnetospheric models and trajectory computations[J]. Space Science Reviews, 2000,93(2):305-333.
doi: 10.1023/A:1026556831199
[19] Smart D F, Shea M A. The limitations of using vertical cutoff rigidities determined from the IGRF magnetic field models for computing aircraft radiation dose[J]. Advances in Space Research, 2003,32(1):95-102.
doi: 10.1016/S0273-1177(03)90375-9
[20] Davis J. Mathematical modeling of earth’s magnetic field[R]. Technical Note,Virginia Tech, Blacksburg, 2004.
[21] 冯春. Matlab实现IGRF国际地磁参考场模型的计算[J]. 内蒙古石油化工, 2014,40(12):43-46.
[21] Feng C. International geomagnetic reference field model(IGRF)calculated by matlab[J]. Inner Mongolia Petrochemical Industry, 2014,40(12):43-46.
[22] 柴松均, 陈曙东, 张爽. 国际地磁参考场的计算与软件实现[J]. 吉林大学学报:信息科学版, 2015,33(3):280-285.
[22] Chai S J, Chen S D, Zhang S. Calculation and software realization of international geomagnetic reference field[J]. Journal of Jilin University:Information Science Edition , 2015,33(3):280-285.
[23] 杨梦雨, 管雪元, 李文胜. IGRF国际地磁参考场模型的计算[J]. 电子测量技术, 2017,40(6):97-100.
[23] Yang M Y, Guan X Y, Li W S. Calculation of IGRF international geomagnetic reference field model[J]. Electronic Measurement Technology, 2017,40(6):97-100.
[24] Campbell W H. Introduction to geomagnetic fields[M]. Cambridge: Cambridge University Press, 2003: 19-33.
[25] Balmino G, Barriot J, Koop R, et al. Simulation of gravity gradients: a comparison study[J]. Bulletin Geodesique, 1991,65(4):218-229.
doi: 10.1007/BF00807265
[26] Abramowitz M, Stegun I A, Romer R H. Handbook of mathematical functions with formulas,graphs,and mathematical tables[M]. Gaithersburg:National Bureau of Standards Department of Commerce, 1988: 331-341.
[27] Blakely R J. Potential theory in gravity and magnetic applications[M]. London: Cambridge University Press, 1996: 100-127.
[1] 徐磊,汪思源,张建清,李文忠,李鹏. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3): 635-642.
[2] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44(3): 573-581.
[3] 董烈乾, 周恒, 郭善力, 蒋连斌, 蒋忠, 于文杰. 一种改进型seislet域迭代阈值压制混叠噪声方法[J]. 物探与化探, 2020, 44(3): 568-572.
[4] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[5] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[6] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
[7] 薛宝林, 刘桂梅, 田增彪, 赵强, 任磊, 徐新学, 付金强. 井中激电在隐伏铜矿勘查中的指示意义[J]. 物探与化探, 2020, 44(3): 507-513.
[8] 张毅, 毛宁波, 何丽娟. 优势道叠加技术在岩性油气藏识别中的应用[J]. 物探与化探, 2020, 44(3): 499-506.
[9] 方菲. 根据重磁资料解释河北断裂体系与地震地质构造[J]. 物探与化探, 2020, 44(3): 489-498.
[10] 陈挺, 严迪, 杨剑, 廖国忠, 武斌, 冉中禹. 基于重力值标准差研究长宁6.0级地震活动性[J]. 物探与化探, 2020, 44(3): 480-488.
[11] 高利君,李宗杰,李海英,王虹,黄超. 塔里木盆地深层岩溶缝洞型储层三维雕刻“五步法”定量描述技术研究与应用[J]. 物探与化探, 2020, 44(3): 691-697.
[12] 马玉歌,苏朝光,张健,刘军胜. 低序级断层结构导向坎尼属性边缘检测识别方法[J]. 物探与化探, 2020, 44(3): 698-703.
[13] 苏永军,范翠松,赵更新,张国利,刘宏伟,孙大鹏. 综合电法在探测海水入侵界面中的研究与应用——以莱州湾地区为例[J]. 物探与化探, 2020, 44(3): 704-708.
[14] 李忠平,王晓华. 基于二维电测深数据作三维反演的基岩探测[J]. 物探与化探, 2020, 44(3): 643-648.
[15] 顾端阳,窦文博,丁富寿,严力,吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com