Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 435-440    DOI: 10.11720/wtyht.2020.1387
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
高密度电阻率法在弃渣堆积体分布调查中的应用
许艺煌1, 黄真萍2,3(), 程志伟2,3, 陈少博4, 陈振明1
1. 福建仙游抽水蓄能有限公司,福建 莆田 351267
2. 福州大学环境与资源学院,福建 福州 350116
3. 地质工程福建省高校工程研究中心,福建 福州 350116
4. 华东勘测设计院(福建)有限公司,福建 福州 350000
The application of high density electrical resistivity method to the investigation of the distribution of slag accumulation in hydropower station
Yi-Huang XU1, Zhen-Ping HUANG2,3(), Zhi-Wei CHENG2,3, Shao-Bo CHEN4, Zhan-Ming CHEN1
1. Fujian Xianyou Pumped Storage Power Co., Ltd., Putian 351267, China
2. College of Environment and Resources, Fuzhou University, Fuzhou 350116, China
3. Fujian Provincial Universities Engineering Research Center of Geological Engineering, Fuzhou 350116, China
4. Fuzhou Branch of East China Engineering Co., Ltd., Fuzhou 350000, China
全文: PDF(4042 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大型水电站建设过程中形成大范围弃渣堆积体,堆载过量极易引发滑塌事故,因此,开展弃渣堆积体分布调查极为重要。本文以某水电站弃渣堆积体为研究对象,以高密度电阻率法为主要手段,并在电法异常区及关键位置采用瞬态瑞利面波法进行验证,同时在场地内布设钻孔进行对比分析,结果表明高密度电阻率法处理成果与瞬态瑞利面波法及钻孔资料吻合程度高,此次调查基本查明了弃渣堆积体的分布情况。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许艺煌
黄真萍
程志伟
陈少博
陈振明
关键词 水电站弃渣堆积体高密度电阻率法瞬态瑞利面波法钻孔    
Abstract

In the construction of large-scale hydropower stations, a large amount of waste slag is produced and is often deposited in the nearby site, thus forming a large scale waste accumulation body. Under the condition that the thickness and trend of the slag accumulation body are not ascertained, the excessive heap load will easily cause the collapse accident, so it is very important to investigate the distribution of the slag accumulation body. In this paper, the high density resistivity method was used as the main method, and the high density resistivity method was used to verify the abnormal area and key position of the electrical method. At the same time, drilling holes were arranged at the site for comparative analysis. The results show that the high density electrical processing results are in good agreement with the results of transient Rayleigh surface wave method and borehole data. Through this investigation, the authors basically detected the distribution of abandoned slag deposits. High density electrical method and transient Rayleigh surface wave method are effective methods for investigating slag deposits.

Key wordshydropower station    waste slag accumulation body    high density resistivity method    transient Rayleigh wave method    drill hole
收稿日期: 2019-07-27      出版日期: 2020-04-22
ZTFLH:  P631  
基金资助:国土资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放基金项目(FJKLGH2017K004);国土资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放基金项目(FJKLGH2017K002);国网科技项目(XY-2018F03-2-84)
通讯作者: 黄真萍     E-mail: zhphuang@126.com
作者简介: 许艺煌(1993-),男,助理工程师,从事工程地质方面的研究工作。Email: 563367130@qq.com
引用本文:   
许艺煌, 黄真萍, 程志伟, 陈少博, 陈振明. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2): 435-440.
Yi-Huang XU, Zhen-Ping HUANG, Zhi-Wei CHENG, Shao-Bo CHEN, Zhan-Ming CHEN. The application of high density electrical resistivity method to the investigation of the distribution of slag accumulation in hydropower station. Geophysical and Geochemical Exploration, 2020, 44(2): 435-440.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1387      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I2/435
Fig.1  工作区地形及测线布置
Fig.2  3条测线的反演电阻率断面
Fig.3  面波测线及钻孔布设示意
面波
测线
所属电
法测线
电极区间
(始-终)
测线长
/m
道间距
/m
偏移距
/m
面波点
/个
1-1' 测线2 33~30 23 1 8 3
2-2' 测线2 26~23 23 1 10 3
3-3' 测线2 21~15 46 2 10 5
4-4' 测线3 4~10 46 2 10 5
5-5' 测线3 23~26 23 1 8 3
Table 1  面波测线布设参数
Fig.4  面波点频散曲线
Fig.5  ZK1处钻孔资料与物探资料对比
Fig.6  ZK2处钻孔资料与物探资料对比
Fig.7  ZK3处钻孔资料与物探资料对比
Fig.8  3条测线的弃渣堆积体分布
[1] 刘建伟, 史东梅, 马晓刚 , 等. 弃渣场边坡稳定性特征分析[J]. 水土保持学报, 2007,21(5):192-195.
[1] Liu J W, Shi D M, Ma X G , et al. Stability characteristics analysis on sideslops of excavation waste dump[J]. Journal of Soil and Water Conservation, 2007,21(5):192-195.
[2] 赵芹, 郑创新 . 沟道型弃渣场分类及工程防护措施分析[J]. 中国水土保持, 2010(4):38-40.
[2] Zhao Q, Zheng C X . Analysis on classification and engineering protection measures of ditch type slag dump[J]. Soil and Water Conservation in China, 2010(4):38-40.
[3] 刘浩, 张家铭, 邵然 , 等. 弃渣场滑坡影响因素敏感性计算分析[J]. 安全与环境工程, 2012,19(6):55-58.
[3] Liu H, Zhang J M, Shao R , et al. Sensitivity analysis of influencing factors of discarded soil field landslide[J]. Safety and Environmental Engineering, 2012,19(6):55-58.
[4] 高才坤 . 堆积体的综合物探方法研究与应用[D]. 长沙:中南大学, 2009.
[4] Gao C K . The research and application of intergrated geophysical methods on accumulation body[D]. Changsha: Central South University, 2009.
[5] 郑冰, 李柳德 . 高密度电阻率法不同装置的探测效果对比[J]. 工程地球物理学报, 2015,12(1):33-39.
[5] Zheng B, Li L D . The exploring effect comparison of different settings in resistivity tomography[J]. Chinese Journal of Engineering Geophysics, 2015,12(1):33-39.
[6] 黄真萍, 胡艳, 朱鹏超 , 等. 高密度电阻率勘测方法分辨率研究与探讨[J]. 工程地质学报, 2014,22(5):1015-1021.
[6] Huang Z P, Hu Y, Zhu P C , et al. Analysis of resolution fluence factors of high-density electric method and its application[J]. Journal of Engineering Geology, 2014,22(5):1015-1021.
[7] 周志军 . 高密度电阻率法在探测隐伏岩性分界面中的应用[J]. 工程地球物理学报, 2014,11(5):693-696.
[7] Zhou Z J . The application of multi-electrode electric method in dividing concealed lithologic interface[J]. Chinese Journal of Engineering Geophysics, 2014,11(5):693-696.
[8] 何清立, 李霄龙, 王志勇 . 高密度电阻率法在滑坡地质灾害勘查治理中的应用[J]. 工程地球物理学报, 2016,13(1):99-104.
[8] He Q L, Li X L, Wang Z Y . The application of high density electrical method to the exploration management of landslide geological disasters[J]. Chinese Journal of Engineering Geophysics, 2016,13(1):99-104.
[9] 黄真萍, 吴伟达, 张义 , 等. 三维高密度电阻率法高分辨数值模拟与分析[J]. 工程地质学报, 2015,23(4):209-214.
[9] Huang Z P, Wu W D, Zhang Y , et al. Numerical simulation and analysis of three dimensionalhigh dependency method with highresolution[J]. Journal of Engineering Geology, 2015,23(4):209-214.
[10] 李文灵, 黄真萍, 王福喜 , 等. 瞬态面波与微震波波动勘测法的分析与对比[J]. 工程地球物理学报, 2015,12(1):96-100.
[10] Li W L, Huang Z P, Wang F X , et al. The comparison between transient surface wave and micro-seismic wave exploration technology[J]. Chinese Journal of Engineering Geophysics, 2015,12(1):96-100.
[11] 李杰生, 钱春宇, 廖红建 . 多道瞬态面波法在铁路路基测试中的应用[J]. 岩土力学, 2003(s2):611-615.
[11] Li J S, Qian C Y, Liao H J . MSASW method appling in inspecting railroad subgrade[J]. Rock and Soil Mechanics, 2003(s2):611-615.
[12] 陈仲候, 王兴泰, 杜世汉 . 工程与环境物探教程[M]. 北京: 地质出版社, 1993.
[12] Chen Z H, Wang X T, Du S H. Engineering and environmental geophysical exploration course[M]. Beijing: Geological Publishing House, 1993.
[13] 唐世庚, 陈燕, 梁志文 , 等. 瞬态面波和地震折射法在隧道勘察中的综合应用[J]. 物探与化探, 2004,28(6):557-560.
[13] Tang S G, Chen Y, Liang Z W , et al. An integrated application of transmission surface wave and seismic reconstruction methods to tunnel expansion[J]. Geophysical and Geochemical Exploration, 2004,28(6):557-560.
[1] 姚纪华,罗仕军,宋文杰,刘媛,赵文刚,吕慧珠. 综合物探在水库渗漏探测中的应用[J]. 物探与化探, 2020, 44(2): 456-462.
[2] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[3] 刘道涵, 罗士新, 陈长敬. 高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探, 2020, 44(1): 215-219.
[4] 刘松. X荧光快速测量在松桃大路锰矿勘查中的应用[J]. 物探与化探, 2019, 43(6): 1262-1267.
[5] 闫国才. 井下钻孔电阻率法岐离率确定采动工作面“三带”顶界面发育高度[J]. 物探与化探, 2019, 43(5): 1151-1156.
[6] 杜鹏,刘晓玲,徐新战,常镪,付连红. 利用温度检测钻孔灌注桩混凝土拌合物面的研究[J]. 物探与化探, 2019, 43(3): 667-671.
[7] 孟凡松,张刚,陈梦君,李怀良. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3): 672-678.
[8] 李富,周洪福,葛华. 不同类型滑坡体的高密度电阻率法勘察电性特征[J]. 物探与化探, 2019, 43(1): 215-221.
[9] 石春娟. 重庆大足千手观音造像的电磁勘探和水文地质勘探[J]. 物探与化探, 2018, 42(6): 1306-1310.
[10] 舒森,王树栋,李广,吕志强,曹强. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探, 2018, 42(6): 1311-1316.
[11] 宫玉菲,杨天春,董邵宇,蒋恺. 高密度电阻率法探测顶管注浆加固质量[J]. 物探与化探, 2018, 42(6): 1317-1320.
[12] 徐春华,秦新龙,崔健,陈振宁,肖晓牛,伍宵,唐俊,张雷. 钻孔测井资料在深部找矿预测中的应用——以福建梅仙镇峰岩—谢坑矿区找矿应用为例[J]. 物探与化探, 2018, 42(5): 873-881.
[13] 何育枫,李晓娟,佘继红,陈晔,徐礼鹏. 基于T-C-V架构的三维城市地质信息共享平台建设[J]. 物探与化探, 2018, 42(4): 804-810.
[14] 王锡勇,李冬伟,成功,罗鹏程. 高放废物地质处置的岩体深部结构面特征研究——以甘肃北山高放废物地质处置地下实验室工程为例[J]. 物探与化探, 2018, 42(3): 481-490.
[15] 李玉成. 钻孔电磁波技术在水泥浆灌注质量检测中的应用[J]. 物探与化探, 2018, 42(3): 640-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com