Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 419-425    DOI: 10.11720/wtyht.2020.1288
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
广东省部分地区土壤放射性核素的测定和剂量评估
杨剑洲1,2, 龚晶晶1,2, 唐世新1,2, 胡树起1,2
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 自然资源部 地球化学探测重点实验室,河北 廊坊 065000
The determination of radioactivity concentrations in soil samples and dose assessment in parts of Guangdong Province
Jian-Zhou YANG1,2, Jing-Jing GONG1,2, Shi-Xin TANG1,2, Shu-Qi HU1,2
1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
2. Key Laboratory for Geochemical Exploration Technology, MNR, Langfang 065000, China
全文: PDF(1617 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

天然及人工放射性是目前生态研究领域的热点之一。在本次试验中,抽查了广东省内不同土壤(沉积物)类型中放射性核素 238U、 232Th、 226Ra和 40K的含量,49件样品中 238U、 232Th、 226Ra和 40K的含量分别为84.3(17.9~209.1)Bq/kg、103.0(10.6~263.8)Bq/kg、77.7(12.0~206.0)Bq/kg和463.3(15.3~1557.6)Bq/kg,地表空气中的伽马吸收剂量率为126.8(27.2~265.9)nGy/h。研究区样品的等效镭为260.7(33.5~619.0)Bq/kg,外部危害指数值为1.2(0.15~2.8),年有效剂量率确定在155.5(33.3~326.1)μSv/y。将每件样品分为岩石背景、地貌背景和土壤类型三个变量因子,随机森林分析表明,样品中的放射性核素分布主要受控于不同的岩石背景,其次为土壤类型和地貌特征。与国内外不同地区的研究对比,广东省内土壤样品中的放射性核素浓度高于国内和全球的平均值,但放射性水平在安全范围内。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨剑洲
龚晶晶
唐世新
胡树起
关键词 土壤环境放射性辐射剂量岩石背景广东省    
Abstract

One of the main problems in the ecological researches is natural environmental radioactivity. In this study, the activity concentrations of naturally formed 238U, 232Th, 226Ra and 40K radionuclides were measured for various types of soil samples collected from Guangdong Province. Samples in 49 siteswere selected within the study area. The concentration of radionuclides of 238U is in the range from 17.9 to 209.1 Bq/kg, with the average value being 84.3 Bq/kg; that of 232Th varies from 10.6 to 263.8 Bq/kg, with average value being 103.0 Bq/kg;that of 226Ra varies from 12.0 to 206.0 Bq/kg, with average value being 77.7 Bq/kg; and that of 40K varies from 15.3 to 1557.6 Bq/kg, with average value being 463.3 Bq/kg. The gamma absorbed dose rates in air is in the range of 27.2~265.9 nGy/h, with an arithmetic mean of 126.8 nGy/h, while the annual effective dose rates (AEDR) are in the range of 33.3 to 326.1 μSv/y, with an arithmetic mean of 155.5 μSv/y. The calculated values of radium equivalent activity (Raeq) and external hazard index (Hex) for the soil samples in the study area is 260.7 (33.5~619.0) Bq/kg and 1.2(0.15~2.8), respectively. Sample sitesare assigned to regional bedrock, geomorphic landscape and soil type, respectively, resulting in three categorical variables. Random forest regression and correlation analysis show that the bedrock influences the levels of natural radioactivity in soils most seriously, followed by the soil type and then by the geomorphic landscape. The activities determined in Guangdong Province are generally higher than the average values of China and the values abroad, but are lower than the safe range of radioactive level.

Key wordssoil    environmental radioactivity    gamma dose rate    rock background    Guangdong Province
收稿日期: 2019-05-20      出版日期: 2020-04-22
ZTFLH:  P632  
基金资助:中国地质调查局地质调查项目(DD20190305)
作者简介: 杨剑洲(1990-),男,助理工程师,主要从事地球化学勘查方法研究工作。Email: yangjianzhou@igge.cn
引用本文:   
杨剑洲, 龚晶晶, 唐世新, 胡树起. 广东省部分地区土壤放射性核素的测定和剂量评估[J]. 物探与化探, 2020, 44(2): 419-425.
Jian-Zhou YANG, Jing-Jing GONG, Shi-Xin TANG, Shu-Qi HU. The determination of radioactivity concentrations in soil samples and dose assessment in parts of Guangdong Province. Geophysical and Geochemical Exploration, 2020, 44(2): 419-425.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1288      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I2/419
核素 能量/keV 发射几率 本底计数率/s-1 探测效率/(cps/Bq) 最小可探测活度/(Bq/kg)
238U 63.3 0.038 0.1045 0.0250 15.1
226Ra 351.9 0.389 0.0485 0.0217 1.3
232Th 911.1 0.277 0.0175 0.0129 1.9
40K 1460.8 0.107 0.0339 0.0102 8.6
Table 1  HPGe γ谱仪实验参数
Fig.1  广东省地貌及采样点岩石背景分布 (图片修改自文献[20])
测试地点 238U含量/(Bq/kg) 232Th含量/(Bq/kg) 226Ra含量/(Bq/kg) 40K含量/(Bq/kg)
样品数 范围 均值±标准差 范围 均值±标准差 范围 均值±标准差 范围 均值±标准差
广东(本次) 49 17.9~209.1 84.3±52.9 10.6~263.8 103.0±67.5 12.0~206.0 77.7±52.4 15.3~1557.6 463.3±389.5
广东 144 12.4~186.8 71.2 1.0~152.7 57.2 2.4~134.6 50.8 35.8~1131.5 414.5
福建 143 13.9~136.0 55.2 19.5~260.0 96.3 18.0~201.0 62.0 24.0~627.0 609
格鲁吉亚M.区 22 14.9~59.1 25.4 17.6~54.9 26.9 243~784 464
Rize省(土耳其) 24 7.4~79.8 24.5 9.5~170.8 51.8 59.4~168.0 94.9 35.7~913.8 344.9
中国 7759 1.8~520.0 38.5 1.0~437.8 54.6 2.4~425.8 37.6 11.5~2185.2 584.0
世界 33 45 32 412
Table 2  土壤样品中主要放射性核素含量
Fig.2  区域岩石背景、土壤类型和地貌类型变量的重要性
Fig.3  不同岩石背景、地貌类型、土壤类型中样品238U、232Th、226Ra和40K比活度箱图
测试地点 γ辐射剂量率计算值/(nGy/h) γ辐射剂量率测量值/(nGy/h)
范围 均值±标准差 范围 均值±标准差
广东本次试验 18.1~271.3 120.5±72.5 27.2~265.9 126.8±56.4
广东 17.7~193.1 84.8±28.5
长江口沉积物 42.4~87.9 66.7±11.1
全国 12.7~1300 69.9±36.0 11.6~523.0 81.5±35.2
土耳其Rize省 10.7~156.4 56.9±36.8
Table 3  γ辐射剂量率的计算值和测量值
测试地点 Raeq/(Bq/kg) Hex AEDR/(μSv/a)
范围 均值±标准差 范围 均值±标准差 范围 均值±标准差
本次试验 33.5~619.0 260.7±160.9 0.15~2.8 1.2±0.7 33.3~326.1 155.5±69.2
长江口沉积物 88.5~194.0 141.1±24.4 0.25~0.55 0.39±0.07 52.0~107.8 81.83±13.7
格鲁吉亚M.区 59.4~168.0 94.9±94.9 36.0~104.0 36±58.2
土耳其Rize省 23.8~347.4 125±82.1 0.06~0.94 0.34±0.22 13.1~191.8 69.8±45.1
Table 4  土壤样品相关放射性危害指标
Fig.4  γ空气吸收剂量率测量值与计算值对比
[1] Unsco. Exposures from natural sources of radiation[M]. New York: United Nations, 1988.
[2] Unscear, Annex B . Exposures of the public and workers from various sources of radiation [R]. New York: United Nations, 2008.
[3] Kekelidze N, Jakhutashvili T, Tutberidze B , et al. Radioactivity of soils in Mtskheta-Mtianeti region (Georgia)[J]. Annals of Agrarian Science, 2017,15(3):304-311.
[4] Qureshi A A, Tariq S, Din K U , et al. Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan[M]. Elsevier, 2014.
[5] Koray A, Akkaya G, Kahraman A , et al. The investigation of radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Zonguldak, Turkey[J]. Acta Physica Polonica, 2017,132(3-II):1122-1125.
[6] Ahmad N, Jaafar M S, Bakhash M , et al. An overview on measurements of natural radioactivity in Malaysia[J]. Journal of Radiation Research and Applied Sciences, 2015,8(1):136-141.
[7] 赵希岳, 樊国华, 蔡志强 , 等. 放射性核素60Co在土壤中的淋溶和迁移分布[J]. 中国环境科学, 2010,30(8):1118-1122.
[7] Zhao X Y, Fan G H, Cai Z Q , et al. Leaching and vertical transference of radioactive nuclide cobalt-60 in soils[J]. China Environmental Science, 2010,30(8):1118-1122.
[8] 王卫星, 杨亚新, 王雷明 , 等. 广东下庄铀矿田土壤的天然放射性研究[J]. 中国环境科学, 2005,25(1):120-123.
[8] Wang W X, Yang Y X, Wang L M , et al. Studies on natural radioactivity of soil in Xiazhuang uranium ore field, Guangdong[J]. China Environmental Science, 2005,25(1):120-123.
[9] 岳玉美, 宋刚, 张志强 , 等. 广州市北部土壤天然放射性水平研究[J]. 中国环境科学, 2011,31(4):657-661.
[9] Yue Y M, Song G, Zhang Z Q , et al. Studies on natural radioactivity of soil in North of Guangzhou[J]. China Environmental Science, 2011,31(4):657-661.
[10] 王启栋, 宋金明, 李学刚 , 等. 昌邑滨海湿地沉积物的放射性核素水平与环境指示意义[J]. 环境科学, 2016,37(8):3026-3033.
[10] Wang Q D, Song J M, Li X G , et al. Distribution and environmental significances of radionuclides in the sediment of the Changyi coastal wetland[J]. Environmental Science, 2016,37(8):3026-3033.
[11] 杜金秋, 关道明, 姚子伟 , 等. 大连近海沉积物中放射性核素分布及环境指示[J]. 中国环境科学, 2017,37(5):1889-1895.
[11] Du J Q, Guan D M, Yao Z W , et al. Distribution and environmental significances of radionuclides in sediments of Dalian coastal area[J]. China Environmental Science, 2017,37(5):1889-1895.
[12] 黄亚楠, 潘少明, 张威 , 等. 中国大陆土壤中239+240Pu的来源与背景值研究[J]. 中国环境科学, 2018,38(12):4608-4616.
[12] Huang Y N, Pan S M, Zhang W , et al. The source and reference inventory of 239+240Pu in the soil of China[J]. China Environmental Science, 2018,38(12):4608-4616.
[13] Ahmed N K, El-Arabi A G M . Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt[J]. Journal of Environmental Radioactivity, 2005,84(1):51-64.
[14] Ghosh D, Deb A, Bera S , et al. Measurement of natural radioactivity in chemical fertilizer and agricultural soil: evidence of high alpha activity[J]. Environmental Geochemistry & Health, 2008,30(1):79-86.
[15] 曾兵 . 成都平原地-空界面天然伽玛场及其辐射环境研究[D]. 成都:成都理工大学, 2010.
[15] Zeng B . The study of gamma radiation field and its environmental on gas-ground interface in Chengdu plain[D]. Chengdu:Chengdu University of Technology, 2010.
[16] 莫纯銮 . 广东省天然放射性生态环境调查评价与治理对策研究[D]. 广州:华南理工大学, 2010.
[16] Mo C L . The study on the investigation and evaluation of natural radioactivity ecological environment in Guangdong province and the countermeasure[D]. Guangzhou:South China University of Technology, 2010.
[17] 广东省地质矿产局. 广东省区域地质志[M]. 北京: 地质出版社, 1988.
[17] Guangdong Geological Bureau. Regional Geology of Guangdong Province [M]. Beijing: Geological Publishing House, 1988.
[18] 王南萍, 肖磊, 刘少敏 , 等. 广东珠海地表介质中238U、232Th和40K的活度水平[J]. 同位素, 2005,18(1):73-78,238.
[18] Wang N P, Xiao L, Liu S M , et al. 238U、232Th and 40K radioactivity level of soil and concrete floor in Zhuhai, Guangdong province[J]. China Journal of Isotopes, 2005,18(1):73-78,238.
[19] 中国科学院华南热带生物资源综合考察队. 广东省地貌区划[R]. 中国科学院华南热带生物资源综合考察队, 1960.
[19] Comprehensive Investigation Team of Tropical Biological Resources of South China, Chinese Academy of Sciences. Landform regionalization of Guangdong Province[R]. 1960.
[20] 广东省地貌数据[DB/OL].地理国情监测云平台. http://www.dsac.cn/DataProduct/Detail/20080008.
[20] Geomorphic data of Guangdong Province[DB/OL].Geographical Information Monitoring Cloud Platform. http://www.dsac.cn/DataProduct/Detail/20080008
[21] GB/T 11713-89 用半导体γ谱仪分析低比活度γ放射性样品的标准方法[S].
[21] GB/T 11713-89 Standard methods of analyzing low specific gamma radioactivity samples by semiconductor gamma spectrometers[S].
[22] HJT61-2001 环境辐射监测技术规范[S].
[22] HJT61-2001 Technical criteria for radiation environmental monitoring[S].
[23] Navas A, Gaspar L, López-Vicente M , et al. Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees)[J]. Radiation Measurements, 2011,46(2):261-269.
[24] Somboon S, Kavasi N, Sahoo S K , et al. Radiocesium and 40K distribution of river sediments and floodplain deposits in the Fukushima exclusion zone[J]. Journal of Environmental Radioactivity, 2018,195:40-53.
[25] Liu C, Chan Y, Alam Kazmi S H , et al. Financial fraud detection model: based on random forest[J]. International Journal of Economics and Finance, 2015,7(7):178-188.
[26] Meng H D, Xiao-Qing J I, Xiao Y L , et al. Research on random forest classification algorithm based on sensitivity degree in Hadoop environment[J]. Journal of Inner Mongolia University of Science & Technology, 2016,( 3):297-301.
[27] 曹龙生, 杨亚新, 张叶 , 等. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报:自然科学版, 2012,35(2):167-172.
[27] Cao L S, Yang Y X, Zhang Y , et al. Distribution pattern of radionuclides in the soil of mainland China[J]. Journal of East China Institute of Technology: Natural Science Edition, 2012,35(2):167-172.
[28] Durusoy A, Yildirim M . Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey[J]. Journal of Radiation Research and Applied Sciences, 2017,10(4):348-352.
[29] 秦苏云, 戚勇, 李淑琴 , 等. 90Sr、137Cs、天然铀、226Ra和239Pu在陆地食物链中的转移系数[J]. 辐射防护, 1995,15(4):241-252.
[29] Qin S Y, Qi Y, Li S Q , et al. Study for transfer coeffecients of 90Sr, 137Cs, natural U, 226Ra and 239Pu in terrestrial foodchains[J]. Radiation Protection, 1995,15(4):241-252.
[30] Desideri D, Battisti P, Giardina I , et al. Assessment of radioactivity in Italian baby food[J]. Food Chemistry, 2019,279:408-415.
[31] Ramzaev V, Barkovsky A, Goncharova Y , et al. Radiocesium fallout in the grasslands on Sakhalin, Kunashir and Shikotan Islands due to Fukushima accident: the radioactive contamination of soil and plants in 2011[J]. Journal of Environmental Radioactivity, 2013,118:128-142.
[32] 陈怀满 . 环境土壤学(第3版)[M]. 北京: 科学出版社, 2018.
[32] Chen H M. Environmental soil science [M]. Beijing: Science Press, 2018.
[33] Beretka J, Matthew P J . Natural radioactivity of Australian building materials, industrial wastes and by-products[J]. Health Physics, 1985,48(1):87.
[34] Wang J, Du J, Bi Q . Natural radioactivity assessment of surface sediments in the Yangtze Estuary[J]. Marine Pollution Bulletin, 2017,114(1):602-608.
[1] 何旺,罗先熔,欧阳菲,刘攀峰,苏艺怀,黄文斌,王东,游军,张小明. 地电化学在陕西略阳县何家垭地区寻找隐伏铜镍矿的研究[J]. 物探与化探, 2020, 44(3): 523-532.
[2] 唐世琪,万能,曾明中,杨柯,刘飞,彭敏,李括,杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
[3] 王冀艳, 储彬彬, 姚文生, 詹秀春, 刘勉. 利用全反射X射线荧光光谱法研究土壤中活动态元素提取动力学[J]. 物探与化探, 2020, 44(2): 350-355.
[4] 肖高强, 宗庆霞, 向龙洲, 刀艳, 徐永强. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2): 412-418.
[5] 李朋飞,陈富荣,杜国强,陶春军,刘超,刘坤. 安徽涡河沿岸土壤氟含量特征及其影响因素[J]. 物探与化探, 2020, 44(2): 426-434.
[6] 王永飞, 李宝新, 曹云, 刘晨阳. 地球物理信息和控矿构造研究在乌克兰米丘林铀矿床中的应用[J]. 物探与化探, 2020, 44(1): 99-106.
[7] 姬丙艳, 沈骁, 姚振, 田滔, 马风娟, 邱瑜. 青海柴达木盆地绿洲农业区硒地球化学特征——以诺木洪绿洲为例[J]. 物探与化探, 2020, 44(1): 199-206.
[8] 周亚龙,郭志娟,王成文,陈杰,彭敏,成杭新. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366.
[9] 成晓梦, 马荣荣, 彭敏, 杨柯, 李括, 王惠艳, 吴超, 杨峥. 中国大宗农作物及根系土中硒的含量特征与富硒土壤标准建议[J]. 物探与化探, 2019, 43(6): 1367-1372.
[10] 谢薇,杨耀栋,侯佳渝,李国成,菅桂芹. 天津市蓟州区富硒土壤成因与土壤硒来源研究[J]. 物探与化探, 2019, 43(6): 1373-1381.
[11] 刘道荣,郑基滋,占玄,吴问丹. 临安山核桃主产区林地土壤重金属生态风险评价[J]. 物探与化探, 2019, 43(6): 1382-1388.
[12] 严明书,吴春梅,蒙丽,丁相伦,董攀,邓海,雷家立,龚媛媛,鲍丽然. 重庆市黔江猕猴桃果园土壤养分状况分析[J]. 物探与化探, 2019, 43(5): 1123-1130.
[13] 王卫星,曹淑萍,李攻科. 天津盘山磨盘柿子品质分析及其产地土壤地球化学特征[J]. 物探与化探, 2019, 43(5): 1131-1137.
[14] 张亚峰,苗国文,马强,姬丙艳,许光. 青海东部碱性土壤中硒的形态特征[J]. 物探与化探, 2019, 43(5): 1138-1144.
[15] 王月平,张立,崔玉军,吕石佳. 宝清县东部土壤硒含量特征及其与土壤性质的关系[J]. 物探与化探, 2019, 43(4): 904-911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com