Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 227-234    DOI: 10.11720/wtyht.2020.1243
  综述 本期目录 | 过刊浏览 | 高级检索 |
地震层析成像方法综述
刘畅1, 李振春1, 曲英铭1, 徐夷鹏1, 赵伟洁2
1. 中国石油大学(华东) 地震波传播与成像实验室,山东 青岛 266580
2. 中国石油化工集团有限公司 胜利油田分公司海洋采油厂,山东 东营 257237
A review of seismic tomography methods
Chang LIU1, Zhen-Chun LI1, Ying-Ming QU1, Yi-Peng XU1, Wei-Jie ZHAO2
1. SWPI,China University of Petroleum(East China),Qingdao 266580,China
2. Ocean Oil Production Plant,Shengli Oilfield Company,China Petrochemical Group Co. Ltd.,Dongying 257237,China
全文: PDF(550 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震层析成像作为一种有效还原地下介质速度模型的方法,为全波形反演提供了可靠的初始速度模型,从原始的射线层析到相移旅行时层析和瞬时旅行时层析,实现了地震波传播的有限频特性;从声波方程到弹性波方程,从各向同性介质到VTI,TTI介质,实现了对真实地下介质情况的模拟。减缓层析反演的病态性也一直是研究热点,常用的方法有正则化,用高斯束层析的敏感核代替传统的射线层析敏感核等。此外,为了避免使成像结果的精度依赖于共成像道集上反射位的真实深度,角度域双差分反射层析可以稳定有效地收敛到精确的偏移速度模型。如今,层析成像逐步向各向异性介质过渡,使用的数据从VSP到WVSP,从单一波形到多种波形联合反演发展,然而,分辨率和计算效率的相关问题仍然需要得到关注。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
李振春
曲英铭
徐夷鹏
赵伟洁
关键词 走时层析波动层析声波波动方程弹性波波动方程联合反演    
Abstract

As a method for effectively reducing the velocity model of the subsurface media,seismic tomography provides a reliable initial velocity model for full waveform inversion.The finite frequency characteristics of seismic wave propagation are realized from primitive ray toe to phase shift travel time tomography and instantaneous travel time tomography.From the acoustic wave equation to the elastic wave equation and from the isotropic medium to the VTI,TTI media,the simulation of the real underground medium is realized.The morbidity of mitigating tomographic inversion has also been a research hotspot.The commonly used methods have regularization,and the sensitive nucleus of Gaussian beam tomography has replaced the traditional ray-sensitive nucleus.Furthermore,in order to avoid the dependence of the accuracy of the imaging results on the true depth of the reflection bits on the common imaging gather,the angular domain double differential reflection tomography can converge stably and efficiently to the accurate migration velocity model.At present,tomography is gradually transitional to anisotropic media,data used are transitional from VSP to WVSP,and a single waveform is developed into multiple waveforms combined inversion.However,problems related to resolution and computational efficiency still require attention.

Key wordstravel time tomography    wave tomography    acoustic wave equation    elastic wave equation    joint inversion
收稿日期: 2019-04-28      出版日期: 2020-04-22
ZTFLH:  P631.4  
基金资助:山东省自然科学基金项目(ZR2019QD004)
作者简介: 刘畅(1995-),男,汉族,山东东营人,在读研究生,主要从事复杂介质地震波正演模拟与反演成像方法方面的研究工作。
引用本文:   
刘畅, 李振春, 曲英铭, 徐夷鹏, 赵伟洁. 地震层析成像方法综述[J]. 物探与化探, 2020, 44(2): 227-234.
Chang LIU, Zhen-Chun LI, Ying-Ming QU, Yi-Peng XU, Wei-Jie ZHAO. A review of seismic tomography methods. Geophysical and Geochemical Exploration, 2020, 44(2): 227-234.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1243      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I2/227
[1] Langan R T, Lerche I, Cutler R T . Tracing of rays through heterogeneous media:An accurate and efficient procedure[J]. Geophysics, 1985,50(9):1456-1465.
[2] Virieux J, Farra V . Ray tracing in 3-D comples isotropic media:An analysis of the problem[J]. Geophysics, 1991,56(12):2057-2069.
[3] Rawlinson N, Hauser J, Sambridge M . Seismic ray tracing and wavefront tracking in laterally heterogeneous media[J].Advances in Geophysics, 2008(49):203-273.
[4] Um J, Thurber C . A fast algorithm for two-point ray tracing[J]. Bulletin of the Seismological Society of America, 1987,77(3):972-986.
[5] Vinje V, Iversen E, Gjoystdal H . Traveltime and amplitude estimation using wavefront construction[J]. Geophysics, 1993,58(8):1157-1166.
[6] Vinje V, Iversen E, Astebol K , et al. Estimation of multivalued arrivals in 3D models using wavefront construction-Part I[J]. Geophysical Processing, 1996,44(5):819-842.
[7] Vinje V, Iversen E, Astebol K , et al. Estimation of multivalued arrivals in 3D models using wavefront construction-Part II[J]. Geophysical Processing, 1996,44(5):843-858.
[8] Bai C Y, Greenhalgh S A . 3-D local earthquake hypocenter determination with an “irregular” shortest-path method[J]. Bull. Seism. Soc. Am., 2006,96(6):2257-2268.
[9] Zhou B, Greenhalgh S A . “Shortest path” ray tracing for most general 2D/3D anisotropic media[J]. Journal of Geophysics & Engineering, 2005,2(1):54-63.
[10] Bona A, Slawinski M A, Smith P . Ray tracing by simulated annealing: Bending method[J]. Geophysics, 2009,74(2):25-32.
[11] Kirkpatrick S, Jr Gelatt C D, Vecchi M P .Optimization by simulated annealing[J]. Science, 1983,220(11):650-671.
[12] Vidale J E . Finite difference traveltime calculation[J].Seismics, 1988(78):2062-2076.
[13] Qin F H, Luo Y, Olsen K B , et al. Finite difference solution of the eikonal equation along expanding wavefronts[J]. Geophysics, 1992,57(3):478-487.
[14] Vidale J E . Finite difference calculation of traveltimes in three dimensions[J]. Geophysics, 1990,55(3):521-526.
[15] Hole J A, Zelt B C . 3-D finite difference reflection traveltimes[J]. Geophysical Journal International, 1995,121(2):427-434.
[16] Afnimar, Koketsu K . Finite difference traveltime calculation for head waves travelling along an irregular interface[J].Geophysics, 2000(143):729-734.
[17] Podvin P, Lecomte I . Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools[J]. Geophysical Journal International , 1991,105(1):271-284.
[18] Van T J, Symes W W . Upwind finite difference calculation of traveltimes[J]. Geophysics, 1991,56(6):812-821.
[19] Kim S, Cook R . 3-D traveltime computation using second order ENO scheme[J].Geophysics, 1999(64):1867-1876.
[20] William A, Schneider J . Robust and efficient upwind finite difference traveltime calculatioins in three dimensions[J]. Geophysics, 1995,60(4):1108-1117.
[21] Qian J L, Symes W W . A adaptive finite difference method for traveltimes and amplitudes[J]. Geophysics, 1999,64(1):167-176.
[22] Popovici A M, Sethian J A . Three-dimensional travel-time computation using the Fast marching method[J]. Geophysics, 1999,64(3):516-523.
[23] Popovici A M, Sethian J A . 3-D imaging using higher order fast marching traveltimes[J]. Geophysics, 2002,67(10):604-609.
[24] Alkhalifah T, Fomel S . Implementing the fast marching eikonal solver:spherical Versus Cartesian coordinates[J]. Geophysical Prospecting, 2001,49(2):165-178.
[25] 黄兴国, 孙建国, 孙章庆 , 等. 基于L-BFGS理论求解复程函方程的地震波复走时计算方法[J]. 物探与化探, 2016,40(5):961-967.
[25] Huang X G, Sun J G, Sun Z Q , et al. A method for calculating complex travel time of seismic waves based on L-BFGS theory[J]. Geophysical and Geochemical Exploration, 2016,40(5):961-967.
[26] Chavent G . Identification of functional parameters in partial differential equations[J].Joint Automatic Control Conference, 1974(12):155-156.
[27] Taillandier C, Noble M, Chauris H , et al. First-arrival traveltime tomography based on the adjoint-state method[J]. Geophysics, 2009,74(6):1-10.
[28] Waheed U, Flagg G, Yarman C E . First-arrival traveltime tomography for anisotropic media using the adjoint-state method[J]. Geophysics, 2016,81(4):147-155.
[29] 李勇德 . 一种新的预条件伴随状态法初至波走时层析[J]. 地球物理学报, 2017,60(10):3934-3941.
[29] Li Y D . A new preconditioned adjoint state method for travel time chromatography of first arrival waves[J]. Chinese Journal of Geophysics, 2017,60(10):3934-3941.
[30] 高飞, 王继勇, 孙成 . 基于指数移动平均的无线层析成像算法[J]. 北京理工大学学报, 2018,38(11):1141-1148.
[30] Gao F, Wang J Y, Sun C . Wireless tomography algorithm based on exponential moving average[J]. Journal of Beijing Institute of Technology, 2018,38(11):1141-1148.
[31] Dahlen F A, Hung S H, Nolet G . Fréchet kernels for finite-frequency traveltimes—I.Theory[J]. Geophysical Journal International, 2000,141(1):157-174.
[32] Spetzler J, Snieder R . The formation of caustics in two and three dimensional media[J]. Geophys. J. Int., 2001,144(1):175-182.
[33] Van der Hilst R D, de Hoop M V . Banana_doughnut kernels and mantle tomography[J]. Geophys. J. Int., 2005,148(6):956-961.
[34] Baig A, Dahlen F A . Statistics of traveltimes and amplitudes in random media[J]. Geophys. J. Int., 2015,158(1):187-210.
[35] Zhao L, Jordan T H . Structural sensitivities of finite-frequency seismic waves:a full-wave approach[J]. Geophys. J. Int., 2006,165(3):981-990.
[36] Zhang Z G, Shen Y, Zhao L . Finite-frequency sensitivity kernels for head waves[J]. Geophys. J. Int., 2007,171(2):847-856.
[37] Sieminski A, Liu Q Y, Tranmpert J , et al. Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods[J]. Geophys. J. Int., 2007,168(3):1153-1174.
[38] 徐小明, 史大年, 李信富 . 有限频层析成像方法研究进展[J]. 地球物理学进展, 2009,24(2):432-438.
[38] Xu X M, Shi D N, Li X F . Research progress of finite frequency tomography[J]. Progress in Geophysics, 2009,24(2):432-438.
[39] Liu Y Z, Wu Z, Geng Z C. First-arrival phase-traveltime tomography [C]//SEG 2017 Workshop:Full-waveform Inversion and Beyond, 2017: 83-86.
[40] Liu Y Z, Wu Z. Which traveltime tomography should be used in near-surface velocity inversion [C]//SEG International Exposition and 88 th Annual Meeting , 2018: 2617-2620.
[41] 张晓辉 . 直达波与反射波联合层析成像方法研究[D]. 秦皇岛:燕山大学, 2017.
[41] Zhang X H . Study on direct wave and reflected wave tomography[D]. Qinhuangdao:Yanshan University, 2017.
[42] 付翠 . 井间地震初至波与反射波旅行时联合层析反演[D]. 西安:长安大学, 2014.
[42] Fu C . Combined tomographic inversion of the first and reflected waves traveling between Wells[D]. Xi’an:Chang’an University, 2014.
[43] 俞岱, 孙渊, 路婧 , 等. 浅层初至波旅行时层析并行算法及在地裂缝调查中的应用[J]. 物探与化探, 2017,41(5):977-985.
[43] Yu D, Sun Y, Lu J , et al. Parallel tomographic algorithm and its application in ground fracture investigation during shallow initial wave travel[J]. Geophysical and Geochemical Exploration, 2017,41(5):977-985.
[44] 黄光南 . 基于射线理论的地震速度层析成像方法研究[D]. 北京:中国石油大学, 2013.
[44] Huang G N . Research on seismic velocity tomography based on ray theory[D]. Peking:China University of Petroleum, 2013.
[45] 张晓曼译 . 利用地方震、远震走时和面波数据联合反演日本俯冲带P波和S波层析成像[J]. 世界地震译丛, 2019,50(1):35-63.
[45] Zhang X M Translate . The p-wave and s-wave tomography of the subduction zone in Japan is inverted by using local seismic,remote seismic travel time and surface wave data[J]. World Earthquake Translation, 2019,50(1):35-63.
[46] Bishop T N, Bube K P, Cutler R T , et al. Tomographic determination of velocity and depth in laterally varying media[J]. Geophysics, 2012,50(6):903-923.
[47] 查树贵 . 约束条件下的反射层析成像方法[J]. 江汉石油科技, 1994,4(3):39-44.
[47] Cha S G . Reflection tomography under constraint conditions[J]. Jianghan petroleum technology, 1994,4(3):39-44.
[48] Wang Y, Houseman G A . Tomographic inversion of reflection seismic amplitude data for velocity variation[J]. Geophysical Journal International, 1995,123(2):355-372.
[49] Kosloff D D, Sudman Y . Uncertainty in determining interval velocities from surface reflection seismic data[J]. Geophysics, 2002,67(3):952-963.
[50] 喻振华 . 地震波速与吸收系数综合层析成像[J]. 地球物理学进展, 2006,21(4):1338-1341.
[50] Yu Z H . Comprehensive tomography of seismic wave velocity and absorption coefficient[J]. Progress in Geophysics, 2006,21(4):1338-1341.
[51] 白雪, 李振春, 张凯 , 等. 基于井数据约束的高精度层析速度反演[J]. 物探与化探, 2015,39(4):805-811.
[51] Bai X, Li Z C, Zhang K , et al. High precision tomographic velocity inversion based on well data constraints[J]. Geophysical and Geochemical Exploration, 2015,39(4):805-811.
[52] 任芳, 李振春, 张敏 , 等. 基于角度域共成像点道集的微分相似优化法偏移速度分析[J]. 物探与化探, 2017,41(5):872-880.
[52] Ren F, Li Z C, Zhang M , et al. Migration velocity analysis by differential similarity optimization method based on common image point trace set in Angle domain[J]. Geophysical and Geochemical Exploration, 2017,41(5):872-880.
[53] 张荣忠, 高彩霞 . 全波形层析成像中建立初始模型的稳健时间域偏移速度分析法[J]. 油气地球物理, 2018,16(1):63-66.
[53] Zhang R Z, Gao C X . Robust time domain migration velocity analysis for establishing initial model in full waveform tomography[J]. Petroleum Geophysics, 2018,16(1):63-66.
[54] 梁生贤, 王桥, 焦彦杰 , 等. LSQR法在位场反演中的分析与评价[J]. 物探与化探, 2019,43(2):359-366.
[54] Liang S X, Wang Q, Jiao Y J , et al. Analysis and Evaluation of LSQR Method in Position Field Inversion[J]. Geophysical and Geochemical Exploration, 2019,43(2):359-366.
[55] Sava P, Fomel S. Coordinate-independent angle-gathers for wave equation migration [C]//SEG Expanded Abstracts, 2005: 1850-1853.
[56] Tang Y, Biondi B . Target oriented wavefield tomography using synthesized Born data[J]. Geophysics, 2011,76(5):191-207.
[57] 刘瑞合, 印兴耀, 浦义涛 . 波动方程模拟PML吸收影响因素分析[J]. 物探与化探, 2016,40(4):757-762.
[57] Liu R H, Yin X Y, Pu Y T . Analysis of factors affecting PML absorption by wave equation[J]. Geophysical and Geochemical Exploration, 2016,40(4):757-762.
[58] 肖艳玲, 范旭, 王晓涛 , 等. 网格层析速度反演技术在齐古背斜叠前深度偏移中的应用[J]. 石油地球物理勘探, 2017,52(2):98-105.
[58] Xiao Y L, Fan X, Wang X T , et al. Application of grid tomography velocity inversion technique in depth migration of Qigu anticline prestack[J]. Oil Geophysical Prospecting, 2017,52(2):98-105.
[59] 薛花, 杜民, 文鹏飞 , 等. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017,41(5):846-851.
[59] Xue H, Du M, Wen P F , et al. Application of grid tomography velocity inversion method in quasi-three-dimensional Xisha hydrate[J]. Geophysical and Geochemical Exploration, 2017,41(5):846-851.
[60] Nolan C J, Symes W W. Imaging and coherency in complex structure [C]//SEG Expanded Abstracts, 1996: 359-363.
[61] Nolan C J, Symes W W . Global solution of a linearized inverse problem for the wave equation[J]. Communications in Partial Differential Equations, 1997,22(1):127-149.
[62] Kroode A P E, Smit D J, Verdel A R . Amicrolocal analysis of migration[J]. Wave Motion, 1998,28(1):149-172.
[63] Xu S, Chauris H, Lambare G, et al. Common angle image gather:A new strategy for imaging complex media [C]//SEG Expanded Abstracts, 1998: 1538-1541.
[64] Prucha M L, Biondi B, Symes W. Angle domain common image gathers by Wave equation migration [C]//SEG Expanded Abstracts, 1999: 824-827.
[65] Lehmann I . Publications du Bureau central seismologique international[M]. Bureau, 1936.
[66] Lailly P. The seismic inverse problem as a sequence of before stack migrations:Conference on Inverse Scattering,Theory and Application [C]//Society for Industrial and Applied Mathematics,Expanded Abstracts, 1983: 206-220.
[67] Gauthier O, Virieux J, Tarantola A . Two dimensional nonlinear inversion of seismic waveforms:Numerical results[J]. Geophysics, 1986,51(2):1387-1403.
[68] Beylkin G . Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform[J]. Journal of Mathematical Physics, 1985,26(1):99-108.
[69] Bleistein N . On the imaging of reflectors in the earth[J]. Geophysics, 1987,52(4):931-942.
[70] Tarantola A . Inverse problem theory:Method for data fitting and model parameter estimation[M]. Elsevier Science Publ. Co. Inc., 1987.
[71] Mora P . Nonlinear 2-D elastic inversion of multi-offset seismic data[J]. Geophysics, 1987,52(7):1200-1228.
[72] Cerveny V . Direct and inverse kinematic problems for inhomegeneous anisotropic media—linearization approach[J].Contrib. Geophys. Inst. Acad. Sci, 1982(13):127-133.
[73] Hiraharak Ishikaway . Travel time inversion for three-dimensional P-wave velocity anisotropy[J]. Journal of Physics of the Earth, 1984,32(3):197-218.
[74] Jech J., Pšenĉìk I . Three dimensional inversion problem for inhomogeneous transversely Isotropic media[J]. Studia Geophysica et Geodetica, 1988,32(3):136-143.
[75] Jech J, Psencik I . First order perturbation method for anisotropic media[J]. Geophysical J. Int., 1989,99(2):369-376.
[76] Chapman C H, Pratt R G . Traveltime tomography in anisotropic media-I. Theory[J]. Geophysical J. Int., 1992,109(1):1-19.
[77] Zhou B, Greenhalgh S . Nonlinear traveltime inversion for 3D seismic tomography in strongly anisotropic media[J]. Geophysical J. Int., 2008,172(1):383-394.
[78] 黄国娇, 白超英, 钱卫 .一般 TI 介质中多震相走时层析成像——以井间成像为例[J]. 石油地球物理勘探, 2016,51(1):115-126.
[78] Huang G J, Bai C Y, Qian W . Multi-seismic traveltime tomography in general TI media — taking interwell imaging as an example[J]. Oil Geophysical Prospecting, 2016,51(1):115-126.
[79] 何雷宇 . 井间各向异性多波走时联合层析成像——以波场模拟拾取走时为例[J]. 地球物理学进展, 2018,33(5):1796-1806.
[79] He L Y . Cross-well anisotropic multi-wave traveltime tomography — taking wave field simulation picking and taking time as an example[J]. Progress in Geophysics, 2018,33(5):1796-1806.
[80] 黄杰, 杨国权, 李振春 , 等. TTI介质拟声波方程数值模拟[J]. 物探与化探, 2018,42(1):134-143.
[80] Huang J, Yang G Q, Li Z C , et al. Numerical simulation of pseudo-acoustic wave equation in TTI medium[J]. Geophysical and Geochemical Exploration, 2018,42(1):134-143.
[81] 贾源源, 董淼 . 地震波各向异性走时层析成像有限元模型仿真[J]. 计算机仿真, 2019,36(3):216-219.
[81] Jia Y Y, Dong M . Finite element model simulation of seismic wave anisotropic traveltime tomography[J]. Computer Simulation, 2019,36(3):216-219.
[82] Hagedoorn J G . A process ofseismic reflection interpretation[J].Geophysical Processing, 1954(2):85-127.
[83] Tikhonov A N, Arsenin V Y . Solution of Ⅲ-posed Problems[J].New York:John Wiley, 1977(25):11-23.
[84] 王宏伟 . 菲涅尔带地震层析[J]. 石油地球物理勘探, 1996,31(3):309-326.
[84] Wang H W . Fresnel zone seismic tomography[J]. Oil Geophysical Prospecting, 1996,31(3):309-326.
[85] Marquering H, Dahlen F A, Nolet G . Three dimensional sensitivity kernels for finite frequency traveltimes: the banana doughnut paradox[J]. Geophysical J. I., 1999,137(3):805-815.
[86] Dahlen F A . Finite frequency sensitivity kernels for boundary topography Perturbations[J]. Geophysical J. Int., 2005,162(2):525-540.
[87] Gelis C, Virieux J, Grandjean G . 2D elastic waveform inversion using Born and Rytov formulations in the frequency domain[J]. Geophysical J. Int., 2007,168(2):605-633.
[88] Spetzler G, Snieder R . The effect of small scale heterogeneity on the arrival time of waves[J]. Geophysical J. Int., 2001,145(3):768-796.
[89] Zhang Z G, Shen Y, Zhao L . Finite frequency sensitivity kernels for head waves[J]. Geophysical J. Int., 2007,171(3):847-856.
[90] 杨国辉 . 菲涅尔带旅行时层析成像方法及应用研究[M]. 厦门:厦门大学, 2009.
[90] Yang G H . Study on the method and application of tone imaging in Fresnel zone[M]. Xiamen:Xiamen University, 2009.
[91] Xia F, Jin S. Angle domain wave equation tomography using RTM image gathers [C]//SEG Technical Program Expanded Abstracts, 2013: 4822-4826.
[92] Zhang K, Yin Z, Li Z C , et al. Wave equation tomographic velocity Inversion method based on the Born/Rytov approximation[J]. Apply Geophysics, 2013,10(3):314-322.
[93] Xie X B, Geng Y . Gaussian beam based finite frequency turing wave tomography[J]. Journal of Applied Geophysics, 2014,109:71-79.
[94] 王高成 . 基于三维角道集的多分量层析速度反演方法在胜利地区的应用[J]. 地球物理学进展, 2017,32(4):1659-1664.
[94] Wang G C . Application of multi-component tomographic velocity inversion method based on three-dimensional angular gathers in Shengli area[J]. Progress in Geophysics, 2017,32(4):1659-1664.
[95] 袁茂林, 蒋福友, 杨鸿飞 , 等. 高斯束线性正演模拟方法研究[J]. 物探与化探, 2017,41(5):881-889.
[95] Yuan M L, Jiang F Y, Yang H F , et al. Research on Gaussian beam linear forward modeling method[J]. Geophysical and Geochemical Exploration, 2017,41(5):881-889.
[96] 宋振东, 蒋正红, 魏成武 , 等. 基于三维层状介质模型地震层析成像正演网格研究[J]. CT理论与应用研究, 2018,27(1):1-8.
[96] Song Z D, Jiang Z H, Wei C W , et al. Research on forward modeling of seismic tomography based on three-dimensional layered medium model[J]. Computerized Tomography Theory and Applications, 2018,27(1):1-8.
[97] 黄国娇, 孙江兵, 白超英 , 等. 三维TI介质中多波走时层析成像[J]. 石油地球物理勘探, 2018,53(1):63-73.
[97] Huang G J, Sun J B, Bai C Y , et al. Multi-wave traveltime tomography in 3D TI media[J]. Oil Geophysical Prospecting, 2018,53(1):63-73.
[98] 成谷 . 反射地震走时层析成像中的大型稀疏矩阵压缩存储和求解[J]. 地球物理学进展, 2008,23(3):676-678.
[98] Cheng G . Large-scale sparse matrix compression storage and solution in reflection seismic traveltime tomography[J]. Progress in Geophysics, 2008,23(3):676-678.
[99] 段心标, 金维浚 . 井间地震层析成像初始速度模型[J]. 地球物理学进展, 2007,22(6):1831-1835.
[99] Duan X B, Jin W J . Initial velocity model of crosswell seismic tomography[J]. Progress in Geophysics, 2007,22(6):1831-1835.
[100] 李贞 . 地震层析成像中模型参数化研究进展[J]. 地球物理学进展, 2015,30(4):1616-1624.
[100] Li Z . Research progress on model parameterization in seismic tomography[J]. Progress in Geophysics, 2015,30(4):1616-1624.
[101] 李红立 . 观测系统对速度层析成像的影响及其收敛性分析[J]. 地球物理学进展, 2018,33(6):2374-2382.
[101] Li H L . Influence of observing system on velocity tomography and its convergence analysis[J]. Progress in Geophysics, 2018,33(6):2374-2382.
[1] 宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
[2] 蔡杰雄. 基于方位—反射角度道集的高斯束层析速度建模方法及实现[J]. 物探与化探, 2018, 42(5): 977-989.
[3] 智庆全, 武军杰, 王兴春, 陈晓东, 杨毅, 张杰, 邓晓红. 三分量定源瞬变电磁解释技术及其在金属矿区的实验[J]. 物探与化探, 2016, 40(4): 798-803.
[4] 白雪, 李振春, 张凯, 宋翔宇, 杨国权, 尚江伟. 基于井数据约束的高精度层析速度反演[J]. 物探与化探, 2015, 39(4): 805-811.
[5] 周印明, 刘雪军, 张春贺, 朱永山. 快速识别页岩气“甜点”目标的时频电磁勘探技术及应用[J]. 物探与化探, 2015, 39(1): 60-63,83.
[6] 戚志鹏, 智庆全, 李貅, 曾友强, 张莹莹. 大定源瞬变电磁三分量全域视电阻率定义与三分量联合反演[J]. 物探与化探, 2014, 38(4): 742-749.
[7] 林珍, 张莉, 钟广见. 重磁震联合反演在南海东北部地球物理解释中的应用[J]. 物探与化探, 2013, 37(6): 968-975.
[8] 刘建利, 李西周, 张泉. 重、磁、电联合反演在银额盆地定量解释中的应用[J]. 物探与化探, 2013, 37(5): 853-858.
[9] 刘天佑, 高文利, 冯杰, 习宇飞, 欧洋. 井中三分量磁测的梯度张量欧拉反褶积及应用[J]. 物探与化探, 2013, 37(4): 633-639.
[10] 王文争, 刘俊杰, 乌锐. PP-PS联合反演含气性预测方法及应用[J]. 物探与化探, 2011, 35(4): 516-520.
[11] 王志宏, 山科社. 电磁法测量的地形影响及校正方法[J]. 物探与化探, 2011, 35(3): 364-367.
[12] 孙中任, 王丽娜, 赵雪娟. 电磁测深与地面磁测数据联合解释[J]. 物探与化探, 2009, 33(6): 704-706.
[13] 张大莲, 刘天佑, 陈石羡, 詹应林. 粒子群算法在磁测资料井地联合反演中的应用[J]. 物探与化探, 2009, 33(5): 571-575.
[14] 林珍, 姚永坚. 南黄海某典型剖面重磁震联合反演及综合解释[J]. 物探与化探, 2009, 33(4): 361-367.
[15] 杨云见, 何展翔, 王绪本, 罗卫锋. 直流电测深法与中心回线瞬变电磁法联合反演[J]. 物探与化探, 2008, 32(4): 442-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com