Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1191-1204    DOI: 10.11720/wtyht.2019.0134
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究
宋豪1,2,3, 张义蜜2,3, 王万银2,3
1. 河南省航空物探遥感中心,河南 郑州 450053
2. 长安大学 重磁方法技术研究所,陕西 西安 710054
3. 长安大学 地质工程与测绘学院,陕西 西安 710054
The research on the prediction of gravity and magnetic anomalies and deep magnetite target areas in the Neihuang-Xunxian area of Henan Province
Hao SONG1,2,3, Yi-Mi ZHANG2,3, Wan-Yin WANG2,3
1. Aerogeophysical and Remote Sensing Center of Henan Province,Zhengzhou 450053,China
2. Institute of Gravity and Magnetic Technology,Chang’an University, Xi’an 710054,China
3. College of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China
全文: PDF(3862 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

河南内黄—浚县一带位于太古宙基底隆起区,且分布有较好的重、磁异常,具备寻找沉积变质型磁铁矿床的有利条件。然而20世纪70年代以来,受制于浅部找矿认识的局限性,一直未能取得找矿突破。笔者以深部磁铁矿找矿靶区为目标,通过中心识别技术(解析信号振幅ASM)、边缘识别技术(NVDR-THDR)获得了研究区隐伏磁性体的平面位置(中心及边界),利用欧拉反褶积获得了研究区隐伏磁性体的埋深信息,利用相关系数分析了该区重磁异常的同源性特征;结合已知钻孔对研究区重点磁异常进行了2.5D拟合反演,确定了隐伏磁性体的规模及空间展布特征,研究结果表明主要磁异常对应的隐伏磁性体埋深在500~1 200 m,且深部含矿性均好于浅部,深部找矿潜力较大。综合地质矿产条件,预测了瓦岗—榆涧、南张保等2个磁铁矿深部找矿靶区,建议作为后续开展深部找矿的重点方向,以尽快实现该区的深部找矿突破。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋豪
张义蜜
王万银
关键词 河南内黄—浚县重磁异常磁铁矿深部找矿靶区    
Abstract

The Neihuang-Xunxian area in Henan Province is located in the Archaean basement uplift area, and has good gravity and magnetic anomalies. It has favorable conditions in the search for sedimentary metamorphic magnetite deposits. However, since the 1970s, due to the limitations of shallow prospecting knowledge, no breakthrough has been made in prospecting. Aimed at the target area of deep magnetite prospecting, the authors detected the plane position (center and boundary) of the concealed magnets in the study area by central recognition technology (analytical signal amplitude ASM) and edge recognition technology (NVDR-THDR), obtained the burial information of the concealed magnets in the study area by Euler deconvolution, and analyzed the homologous characteristics of gravity and magnetic anomalies in the study area by correlation coefficient. Combined with known boreholes, 2.5D fitting inversion of key magnetic anomalies in the study area was carried out, and the scale and spatial distribution characteristics of the concealed magnets were determined. The results show that the buried depth of the concealed magnets corresponding to the main magnetic anomalies is 500~1 200 m, and the ore-bearing property in the deep part is better than that in the shallow part, so the prospecting potential in the deep part is great. On the basis of comprehensive geological and mineral conditions, two deep prospecting target areas of Wagang-Yujian and Nanzhangbao magnetite ores were delineated. It is suggested that they should be the key directions in further deep prospecting with the purpose of achieving a breakthrough in deep prospecting in this area as soon as possible.

Key wordsNeihuang-Xunxian area of Henan Province    gravity and magnetic anomalies    magnetite    deep prospecting target area
收稿日期: 2019-03-13      出版日期: 2019-11-28
:  P631  
基金资助:国家重点基础研究发展计划项目“典型覆盖区航空地球物理技术示范与处理解释软件平台开发”之课题“航空地球物理数据综合处理解释方法研究及软件开发”(2017YFC0602202);河南省2008年度地质勘查基金项目(豫财[2009]56号-13)
作者简介: 宋豪(1986-),男,长安大学硕士研究生,工程师,从事重、磁勘探及电法勘探工作。Email:545752853@qq.com
引用本文:   
宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
Hao SONG, Yi-Mi ZHANG, Wan-Yin WANG. The research on the prediction of gravity and magnetic anomalies and deep magnetite target areas in the Neihuang-Xunxian area of Henan Province. Geophysical and Geochemical Exploration, 2019, 43(6): 1191-1204.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0134      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1191
Fig.1  研究区大地构造位置(据河南省区域地质志)
Fig.2  研究区基岩地质
1—白垩系;2—平顶山组;3—上石盒子组、下石盒子组;4—山西组、太原组;5—本溪组;6—马家沟组;7—三山子组、铁仙沟组及白龙庙组;8—奥陶系未分;9—张夏组、朱砂洞组、辛集组;10—馒头组;11—寒武系未分;12—太古宇;13—实测及推测地质界线;14—实测及推测不整合接触地质界线;15—实测及推测正断层;16—实测及推测逆断层;17—实测及推测性质不明断层;18—研究区范围
地层 岩性 磁化率κ/(10-5SI)
第四系(Q) 黄土 0
新近系(N) 砂岩、泥岩、砾岩、砂质页岩 6~19
奥陶系(O) 页岩、白云质灰岩 0
寒武系(∈) 灰岩、泥灰岩、页岩 0~14
太古宇(Ar) 二长片麻岩、斜长片麻岩 873~1338
太古宇(Ar) 含磁铁斜长片麻岩、含磁铁麻粒岩 4358~12157
Table 1  研究区地层磁性统计
时代地层 岩性 平均密度/(103 kg·m-3) 密度差/(103 kg·m-3)
第四系(Q) 黄土、粉土、砂土 1.91
新近系(N) 黏土岩、砂岩 2.30 0.39
二叠系(P) 砂岩、页岩、黏土岩 2.45 0.15
石炭系(C) 黏土岩、灰岩 2.48 0.03
奥陶系(O) 灰岩 2.61 0.13
寒武系(∈) 白云岩、灰岩、页岩 2.63 0.02
太古宇(Ar) 片麻岩、片岩、变粒岩 2.72 0.09
太古宇(Ar) 磁铁矿化片麻岩 2.95 0.23
Table 2  研究区地层密度统计
Fig.3  研究区化极磁异常(a)和剩余磁异常平面(b)
异常编号 地理位置 异常走向 异常强度/nT 异常形态、规模
C-1 研究区北部屯庄、镇抚寨一带 异常走向NWW 极大值350 形态不规则,包含两个异常中心,异常区面积约8.4 km2
C-2 研究区西北部伏道、瓦岗、榆涧一带 走向NW-SE 极大值350 形态相对规则,为区内最大规模正磁异常,异常区面积约102 km2
C-3 研究区西部边界,位于三角村附近 长轴走向近EW 极大值100 规则磁异常,形状近圆形,异常区面积约2.1 km2
C-4 研究区南部迎阳铺、黄辛庄、善堂一带 主体走向为NW向,
局部地区有变化
极大值250 形状极不规则,异常区面积约58.9 km2
C-5 中部井店、木六村、白条河—带 总体走向NNW 极大值350 形态不甚规则,异常区面积约33.8 km2
C-6 研究区中部,位于高王尉西南 异常呈NWW向 极大值50 形状呈椭圆,强度相对小,异常区面积约3.4 km2
C-7 研究区东北角南张保一带 总体走向近SN 极大值350 异常呈扇形,北宽南窄,异常区面积约18.3 km2
Table 3  研究区主要磁异常特征
Fig.4  研究区布格重力异常(a)和剩余重力异常平面(b)
Fig.5  研究区化极磁异常解析信号振幅(ASM)异常
Fig.6  研究区化极磁异常归一化总水平导数垂向导数(NVDR-THDR)
Fig.7  欧拉反褶积计算磁源深度
磁异常名称 反演磁源最小深度/m 以往验证情况 备注
屯庄—镇抚寨 555~899 最深验证孔1 298.24 m 异常性质已基本查明
井店 606~630 最深验证孔661.55 m 异常性质已基本查明
瓦岗—榆涧 879~1 432 最深验证孔670.01 m 孔深偏浅,异常性质不明
南张保异常 1 091~1 413 最深验证孔762.15 m 孔深偏浅,异常性质不明
木六 656~855 无控制
善堂—黄辛庄 507~632 无控制
高王尉 854 无控制
三角村 746 无控制
Table 4  重点磁异常磁源反演深度统计
钻孔编号 Q+N厚度/m 孔深/m 反演磁源深度/m 见矿情况
东尧会ZK1 78.75 650.63 892 未见矿,角闪斜长片麻岩
旱漯河ZK1-1 207.9 442.36 555 267~318 m含钛铁矿化
镇抚寨ZKS3 207.63 501.61 555 见含磁铁矿化片麻岩
钻孔sjzk1 406.18 1298.24 742 414.35~834 m不连续含磁铁矿,矿化层厚度156.98 m
ZK101 482 629 742 见含磁铁矿化片麻岩
旱塔河CK1 488.92 745.08 742 见含磁铁矿化片麻岩
ZK2-1 481.51 581.66 742 深度509~559 m见含磁铁辉石斜长片麻岩,磁铁含量3%~5%
水塔河ZK1 482.04 632.8 742 见含磁铁矿化片麻岩
ZK2-2 470.83 744.9 742 深度486~626 m见含钛铁矿岩石,含量3%~5%
瓦岗ZK3 286.06 336.77 1432 见太古宇变质岩,未见强磁性体
瓦岗ZK1 279.14 478.74 1432 见太古宇变质岩,未见强磁性体
汤2 317 353 1432 见太古宙变质岩
瓦岗ZK2 303.47 670.1 1432 见太古宙变质岩,未见强磁性体
下庄ZK1 288.92 603.45 无定位解 见厚度1.08 m,含铁19.5%斜长片麻岩
新庄ZK1 289 512 无定位解 见太古宙变质岩
连池ZK1 83.94 498.02 439 见太古宙变质岩
连池ZK2 88.19 494.47 439 见太古宙变质岩
后圈里CK1 311.61 504.4 482 见太古宙变质岩
ZKS1 325.53 448.32 482 见太古宙变质岩
井店ZK1 173.9 661.55 630 辉绿岩及少量磁铁矿化
井店ZK2 91.09 500 630 辉绿岩及少量磁铁矿化
南张保ZKS2 567.01 762.15 1091 钻孔发现有混合花岗岩,片麻岩中见少量磁铁矿及黄铁矿
汤3 284 355 679 见太古宙变质岩
汤4 755 1127 1445 终孔于奥陶系
Table 5  验证钻孔深度与反演磁源深度对比
Fig.8  研究区重力异常与磁异常相关系数
a—布格重力异常垂向一阶导数与化极磁异常相关系数;b—布格重力异常垂向一阶导数与剩余磁异常相关系数
隐伏磁性体名称 总场(布格重力异常垂向一阶
导数与磁化极异常)相关系数
剩余场(布格重力异常垂向一阶
导数与剩余磁异常)相关系数
相关性特征
瓦岗—榆涧磁性体 -0.5~+0.4 -0.4~+0.1 较弱相关性
镇抚寨—屯庄磁性体 -0.5~+0.2 -0.2~+0.5 较弱相关性
井店—郭桑屯磁性体 +0.4~+0.7 +0.4~+0.7 较强相关性
南张保磁性体 南部:-0.3~+0.4 -0.2~+0.3 较弱相关性
北部:+0.5~+0.8 +0.3~+0.7 较强相关性
善堂—黄辛庄磁性体 北部:+0.2~+0.6 0~+0.4 较弱相关性
中间:-0.3~+0.1 -0.1~+0.2 基本不相关
南部:-0.6~+0.1 -0.5~0 较弱相关性
三角村磁性体 +0.3~+0.4 +0.6~0.7 较强相关性
高王尉磁性体 -0.1~+0.5 0.1~0.4 较弱相关性
Table 6  隐伏磁性体相关系数分析
Fig.9  研究区化极磁异常平面及定量解释剖面分布
Fig.10  CK1剖面定量反演解释
起深/m 止深/m TFe>10%矿
化层厚度/m
平均品位/% 主要岩性
TFe MFe
414.35 422.58 8.23 11.23 1.91 含石榴石角闪石辉石斜长片麻岩
423.58 425.58 2.00 10.38 2.63 含石榴石角闪石辉石斜长片麻岩
427.58 433.38 5.80 11.27 2.72 含石榴石角闪石辉石斜长片麻岩
482.58 495.58 13.00 10.91 2.12 含石榴石角闪石辉石斜长片麻岩
497.58 502.98 5.40 10.75 2.34 含石榴石辉石角闪斜长片麻岩
505.38 508.63 3.25 10.19 2.07 含石榴石辉石角闪斜长片麻岩
514.58 516.43 1.85 10.33 1.67 含石榴石辉石角闪斜长片麻岩
520.98 523.13 2.15 10.62 0.83 含石榴石辉石角闪斜长片麻岩
693.00 694.40 1.40 10.00 2.44 含石榴石闪辉斜长片麻岩
701.50 725.50 24.00 10.90 2.98 含石榴石闪辉斜长片麻岩
728.40 745.10 16.70 10.99 2.68 斜长石榴角闪紫苏麻粒岩
746.50 764.40 17.90 10.85 3.07 斜长石榴角闪紫苏麻粒岩
770.40 787.40 17.00 11.30 3.43 斜长石榴角闪紫苏麻粒岩
796.20 834.50 38.30 12.10 4.54 斜长石榴角闪紫苏麻粒岩
矿化层总厚度 156.98 m
Table 7  sjzk1孔见矿情况
Fig.11  定量解释剖面
Fig.12  研究区磁铁矿深部找矿靶区预测
靶区
编号
地理
位置
可能成
矿类型
重磁特
征组合
重磁对
应分析
磁性体顶面最小
埋深
断裂 前人验证情况
B-1 瓦岗—榆涧 沉积变质型 化极磁高、
剩余磁高、
布格重力高、
剩余重力低
较弱相关性 欧拉反褶积深度:914 m,拟合深度:930 m 断裂F2通过 4个孔,孔深
336.77~670.1 m
B-2 南张保 沉积变质型
叠加矽卡岩
化极磁高、
剩余磁高、
布格重力高、
剩余重力低
南部弱相关
北部强相关
南部欧拉反褶积深度:1 091 m,拟合深度:960 m;北部欧拉反褶积深度:1 038 m,拟合深度:840 m 断裂发育,处
于断裂F3、F5
的交汇部位
1个孔,孔深
762.15 m
Table 8  预测磁铁矿深部找矿靶区特征
[1] 赵海娇, 龚建军, 徐正玉 , 等. 重磁反演在马口铁矿的应用[J]. 西部探矿工程, 2017,29(5):138-142.
[1] Zhao H J, Gong J J, Xu Z Y , et al. Application of gravity and magnetic inversion in Makou Iron Mine[J]. West-China Exploration Engineering, 2017,29(5):138-142.
[2] 李弘, 俞建宝, 吕慧 , 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017,41(2):242-248.
[2] Li H, Yu J B, Lyu H , et al. Gravity and aeromagnetic responses and heat-controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 2017,41(2):242-248.
[3] 邢琮琮 . 重磁数据处理在青海恰卜恰地区的应用研究[D]. 长春:吉林大学, 2017.
[3] Xing C C . The application research of gravity and magnetic data processing in Qiabuqia area of Qinghai province[D]. Changchun:Jilin University, 2017.
[4] 张春灌, 袁炳强, 李玉宏 , 等. 基于重磁资料的渭河盆地氦气资源分布规律[J]. 地球物理学进展, 2017,32(1):344-349.
[4] Zhang C G, Yuan B Q, LI Y H , et al. Distribution of Helium resources in Weihe basin based on gravity and magnetic data[J]. Progress in Geophysics, 2017,32(1):344-349.
[5] 韩波, 张训华, 田振兴 . 利用重磁异常场研究东海深部构造[J]. 高技术通讯, 2015,25(5):493-499.
[5] Han B, Zhang X H, Tian Z X . Study of the deep structures features in the East China Sea using the gravity and magnetic anomaly field[J]. Chinese High Technology Letters, 2015,25(5):493-499.
[6] 王万银, 王云鹏, 李建国 , 等. 利用重、磁资料研究于都—赣县矿集区盘古山地区断裂构造及花岗岩体分布[J]. 物探与化探, 2014,38(4):825-834.
doi: 10.11720/wtyht.2014.4.35
[6] Wang W Y, Wang Y P, Li J G , et al. Study on the faults structure and granite body distribution in Pangushan area of Yudu-Gan xian ore district using gravity and magnetic data[J]. Geophysical and Geochemical Exploration, 2014,38(4):825-834.
[7] Mohammed J, Najib E G, Azzouz K , et al. Gravity and magnetic investigations in the Haouz basin, Morocco. Interpretation and mining implications[J]. Journal of African Earth Sciences, 2010,58(2):331-340.
[8] Martelet G, Perrin J, Truffert C, Deparis J . Fast mapping of magnetic basement depth, structure and nature using aeromagnetic and gravity data: combined methods and their application in the Paris Basin[J]. Geophysical Prospecting, 2013,61(4):857-873.
[9] Aboud E, EI-Masry N, Qaddah A , et al. Magnetic and gravity data analysis of Rahat volcanic field, EI-Madinah city, Saudi Arabia[J]. NRIAG Journal of Astronomy and Geophysics, 2015,4(1):154-162.
[10] EI Sayed I S . The integration of gravity, magnetic and seismic data in delineating the sedimentary basins of northern Sinai and deducing their structural controls[J]. Journal of Asian Earth Sciences, 2016,115:345-367.
[11] Sunaryo. Response of gravity, magnetic, and geoelectrical resistivity methods on Ngeni Southern Blitar mineralization zone[J]. Journal of Physics: Conference Series, 2018,979(1):1-9.
[12] 张增奇, 李英平, 王怀洪 , 等. 山东省齐河禹城地区发现大型富铁矿[J]. 山东国土资源, 2016,32(5):94.
[12] Zhang Z Q, Li Y P, Wang H H , et al. Large iron-rich ores were found in Qihe-Yucheng area of Shandong Province[J]. Land and Resources in Shangdong Province, 2016,32(5):94.
[13] 朱裕振, 周明磊, 高志军 , 等. 山东齐河—禹城地区矽卡岩型富铁矿的发现及其意义[J]. 地质通报, 2018,37(5):938-944.
[13] Zhu Y Z, Zhou M L, Gao Z J , et al. The discovery of the Qihe-Yucheng skarn type rich iron deposit in Shandong and its exploration significance[J]. Geological Bulletin of China, 2018,37(5):938-944.
[14] 郝兴中, 杨毅恒, 李英平 , 等. 山东成武—曹县地区磁异常特征及铁矿预测[J]. 地球物理学进展, 2018,33(2):613-619.
[14] Hao X Z, Yang Y H, Li Y P , et al. Magnetic anomaly characteristics and iron ore prediction of Chengwu-Caoxian county area in Shandong province,China[J]. Progress in Geophysics, 2018,33(2):613-619.
[15] 汪青松, 吴明安, 袁平 , 等. 安徽省庐江县泥河铁矿重磁异常特征[J]. 地质与勘探, 2012,48(1):148-154.
[15] Wang Q S, Wu M A, Yuan P , et al. Characteristics of gravity and magnetic anomalies in the Nihe iron deposit of Lujiang County, Anhui Province[J]. Geology and Exploration, 2012,48(1):148-154.
[16] 罗凡, 严加永, 付光明 . 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018,42(1):50-60.
[16] Luo F, Yan J Y, Fu G M . The application of gravity and magnetic three-dimensional inversion based on known information constraint in deep magnetite exploration: A case study of the Nihe iron deposit in Anhui Province[J]. Geophysical and Geochemical Exploration, 2018,42(1):50-60.
[17] 卢焱, 李健, 白雪山 , 等. 地面磁法在隐伏铁矿勘查中的应用——以河北滦平Ⅱ号铁矿为例[J]. 吉林大学学报:地球科学版, 2008,38(4):698-702.
[17] Lu J, Li J, Bai X S , et al. Application of magnetic survey on hidden iron deposit prospecting: a case study on luanpingⅡ iron deposit in hebei province,china[J]. Journal of Jilin University:Earth Science Edition, 2008,38(4):698-702.
[18] 张国利, 赵更新, 滕菲 , 等. 高精度重力测量在冀东铁矿整装勘查区查找隐伏铁矿中的应用[J]. 地质调查与研究, 2014,37(1):46-51.
[18] Zhang G L, Zhao G X, Teng F , et al. Application of the high precision gravity survey in prospeting concealed deposit in jidong iron ore peripheral coverage area[J]. Geological Survey And Research, 2014,37(1):46-51.
[19] 张兴辽, 张平和, 豆效广 . 河南省找矿突破战略行动三年成果汇总报告[R]. 河南省国土资源厅, 2014.
[19] Zhang X L, Zhang P H, Dou X G . Summary report on the three-year achievements of henan province’s strategic action for prospecting breakthroughs [R]. Department of Land and Resources of Henan Province, 2014.
[20] 陈天振, 张满波, 孙治新 . 河南省内黄—浚县地区航磁异常查证报告[R]. 河南省地质矿产勘查开发局地球物理勘查队, 2011.
[20] Chen T Z, Zhang M B, Sun Z X . Aeromagnetic anomaly verification report of Neihuang-Xunxian area in Henan province [R]. Geophysical Exploration Team of Henan Geological and Mineral Exploration and Development Bureau, 2011.
[21] 河南省地质矿产局. 河南省区域地质志[M]. 北京: 地质出版社, 1992.
[21] Henan Provincial Bureau of Geology and Mineral Resources. Regional geological records of Henan Province [M]. Beijing: Geological Publishing House, 1992.
[22] 李刚, 张琳, 周永波 , 等. 隐伏隆起区内部预测煤田的技术方法研究[J]. 中国矿业, 2014,23(9):70-75.
[22] Li G, Zhang L, Zhou Y B , et al. Study of technical method on looking for coal field inside the concealed uplift area[J]. China Mining Magazine, 2014,23(9):70-75.
[23] 张琳, 张慧利, 杜婉怡 , 等. 浚县新镇一带煤系地层地质构造及其勘查方法研究[J]. 中国煤炭, 2016,42(11):30-33.
[23] Zhang L, Zhang H L, Du W Y , et al. Study on geological structure of coal measures strata in Xinzhen of Xunxian and its exploration methods[J]. China Coal, 2016,42(11):30-33.
[24] 刘文忠 . 河南内黄凸起北段煤田地质特征[J]. 内蒙古煤炭经济, 2017(10):157-158.
[24] Liu W Z . Geological characteristics of coalfields in the northern section of Neihuang uplift in Henan[J]. Inner Mongolia Coal Economy, 2017 ( 10):157-158.
[25] 王万银 . 位场解析信号振幅极值位置空间变化规律研究[J]. 地球物理学报, 2012,55(4):1288-1299.
doi: 10.6038/j.issn.0001-5733.2012.04.024
[25] Wang W Y . Spatial variation law of the extremum value position of analytical signal amplitude for potential field data[J]. Chinese Journal of Geophysics, 2012,55(4):1288-1299.
[26] 王万银, 邱之云, 杨永 , 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010,25(1):196-210.
doi: 10.3969/j.issn.1004-2903.2010.01.027
[26] Wang W Y, Qiu Z Y, Yang Y , et al. Some advances in the edge recognition of the potential field[J]. Progress in geophysics, 2010,25(1):196-210.
[27] Wang Wanyin, Pan Yu, Qiu Zhiyun . A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 6(3):226-233+299.
[28] Dewangan P, Ramprasad T, Ramana M V , et al. Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background[J]. Pure and Applied Geophysics, 2007,164(11):2359-2372.
[29] Majid Beiki . TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Aseie area, Sweden[J]. Journal of Applied Geophysics, 2013: 90.
[30] 金家龙 . 水下多磁性目标的欧拉反褶积定位算法研究[D]. 哈尔滨:哈尔滨工程大学, 2014.
[30] Jin J L . Research on multiple underwater magnetic targets localization algorithm of Euler deconvolution[D]. Harbin:Harbin University of Engineering, 2014.
[31] Mashael M. AI-Saud . The role of aeromagnetic data analysis (using 3D Euler deconvolution) in delineating active subsurface structures in the west central Arabian shield and the central Red Sea, Saudi Arabia[J]. Arabian Journal of Geosciences, 2014 ( 10):4361-4376.
[32] 林万里, 方根显, 戴清峰 , 等. 基于重磁欧拉3D反褶积的相山基底起伏研究[J]. 物探化探计算技术, 2015,37(2):158-163.
[32] Lin W L, Fang G X, Dai Q F , et al. research of Xiangshan volcano basin based on 3D gravity and magnetic Euler deconvolution[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015,37(2):158-163.
[33] 贾朔 . 磁异常欧拉反褶积方法的改进及在福建永定大排矿区的应用[D]. 北京:中国地质大学(北京), 2017.
[33] Jia S . The improvement of Euler deconvolution method of magnetic anomaly and its application in mining area of dapai in Yongding county in Fujian province[D]. Beijing:China University of Geosciences (Beijing), 2017.
[34] 史佳楠 . 优化欧拉反褶积法及在目标体定位中的应用[D]. 长春:吉林大学, 2018.
[34] Shi J N . Optimization Euler’s deconvolution and its application in target positioning[D]. Changchun:Jilin University, 2018.
[35] 赵汝敏, 朱光辉, 柏冠军 . 重磁对应分析技术在缅甸X区块的应用研究[J]. 地球物理学进展, 2013,28(2):914-919.
[35] Zhao R M, Zhu G H, Bai G J . The application of correspondence analysis technique of gravitational and magnetic anomalies in the process of factual data, in myanmar region[J]. Progress in Geophysics, 2013,28(2):914-919.
[36] 窦喜英, 吴燕冈, 王恩利 , 等. 重磁对应分析方法在东北地区实际资料处理中的应用[J]. 吉林地质, 2010,58(2):331-340.
[36] Dou X Y, Wu Y G, Wang E L , et al. The application of correspondence analysis method of gravity and magnetic anomalies in the process of factual data, in northeast China[J]. Jilin Geology, 2010,58(2):331-340.
[37] 刘前坤, 李皎皎, 徐璐平 , 等. 卫星重、磁对应分析磁密比在判定地壳深部断裂上的应用——以西藏东北部地区为例[J]. 物探与化探, 2015,39(S1):119-125.
doi: 10.11720/wtyht.2015.S1.24
[37] Liu Q K, Li J J, Xu L P , et al. The application of the satellite corresponding analysis of the magnetism-density ratio to the determination of the deep crust fractures: A case study of northeast region of Tibet[J]. Geophysical and Geochemical Exploration, 2015,39(S1):119-125.
[1] 张磊, 王万银, 赵修军, 张义蜜. 基于重磁场特征的新蔡铁矿区构造单元分布特征[J]. 物探与化探, 2020, 44(4): 975-984.
[2] 顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
[3] 刘金兰, 赵斌, 王万银, 李建国, 周新鹏, 王云鹏. 南岭于都—赣县矿集区银坑示范区重磁资料探测花岗岩分布研究[J]. 物探与化探, 2019, 43(2): 223-233.
[4] 雷晓东, 李巧灵, 李晨, 王元, 关伟, 杨全合. 北京平原区西北部隐伏岩体的空间分布特征[J]. 物探与化探, 2018, 42(6): 1125-1133.
[5] 李玉录, 邢利娟, 拜占红, 刘志华, 王震. 综合物探方法在青海省跃进山铁矿勘查中的应用[J]. 物探与化探, 2018, 42(5): 889-895.
[6] 严海麒, 云辉, 王恺莉, 宋勤昌, 常永军. 河南汝阳竹园沟钼矿床物化探异常特征及找矿效果[J]. 物探与化探, 2018, 42(4): 675-681.
[7] 陈炳锦. 地面高精度磁法在陕南西乡地区磁铁矿勘查中的应用[J]. 物探与化探, 2014, 38(6): 1129-1133.
[8] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[9] 黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6): 1207-1211.
[10] 杨建辉, 王亮, 张家德, 杨胜发. 黔东南重磁异常与金异常特征及找矿意义[J]. 物探与化探, 2013, 37(5): 794-799.
[11] 刘玲, 张明华, 田黔宁, 尚龙平. 突泉盆地磁性体重力场剥离的方法技术及岩体三维显示[J]. 物探与化探, 2013, 37(2): 242-245.
[12] 陈炳武, 申扎根. 利用平台磁异常的综合地球物理特征推断矿体的成因类型[J]. 物探与化探, 2012, 36(4): 550-555.
[13] 王建飞, 左琼华, 陈载林. 钻孔岩芯磁参数测定提高磁铁矿矿层预测精度[J]. 物探与化探, 2012, 36(4): 556-558.
[14] 刘益中, 詹少全, 李爱勇, 冯戋戋, 赵松. AMT在印尼某铁矿区勘查中的应用[J]. 物探与化探, 2012, 36(4): 559-561.
[15] 陈召曦, 孟小红, 刘国峰, 郭良辉. 基于GPU的任意三维复杂形体重磁异常快速计算[J]. 物探与化探, 2012, 36(1): 117-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com