Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 966-975    DOI: 10.11720/wtyht.2019.1470
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
泌阳凹陷双河油田原油地球化学特征及精细油—源对比研究
章新文1, 高儇博2,3(), 杨云飞1, 谢春安1, 谭静娟1
1. 中国石化河南油田分公司 石油勘探开发研究院,河南 郑州 450000
2. 复杂油气田勘探开发重庆市重点实验室,重庆 401331
3. 重庆科技学院 石油与天然气工程学院,重庆 401331
Geochemistry and oil-source rock correlations in the Shuanghe oilfield, Biyang sag, Nanxiang basin
Xin-Wen ZHANG1, Xuan-Bo GAO2,3(), Yun-Fei YANG1, Chun-An XIE1, Jing-Juan TAN1
1. Exploration & Development Research Institute of Henan Oilfield Company, SINOPEC, Zhengzhou 450000, China;
2. Chongqing Key Laboratory of Complicated Oil and Gas Field Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China
3. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
全文: PDF(4598 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

以双河油田典型原油样品为基础,采用气相色谱—质谱分析技术(GC-MS),通过多种生物标志物参数对比和色谱图特征分析,对核二段、核三段共计28个原油样品做详细的地球化学特征描述和精细油—源对比。分析结果表明,双河油田核三上亚段原油饱和烃色谱图为前峰型和双峰型,重排甾烷和三环萜烷的相对含量较低;而核三下亚段原油饱和烃色谱图主要为前峰型,重排甾烷和三环萜烷的相对含量较高;核三段原油C19、C20、C21三环萜烷呈上升型分布,伽马蜡烷含量较高,C27~C29规则甾烷以“V”字型分布为主。核二段和核三段原油,陆源高等植物和低等水生生物均有贡献,且沉积环境较还原,核三下亚段原油成熟度明显高于核三上亚段原油,因此最终确定核三下亚段原油主要来源于核三下亚段烃源岩,而核三上亚段原油则为核三上亚段和核三下亚段烃源岩的混源油。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章新文
高儇博
杨云飞
谢春安
谭静娟
关键词 双河油田原油生物标志化合物气相色谱—质谱;油源对比    
Abstract

In this paper the authors mainly studied geochemical characteristics and oil-source rock correlations of 28 oil samples from the Shuanghe oilfield based on the gas chromatography-mass spectrometry and biomarkers. The results indicate that the peaks of C19, C20, C21- tricyclic terpanes gradually rise and the peaks of C27~C29 steranes are characterized by "V" shape of crude oils in the Shuanghe Oilfield. Besides, the concentration of gammacerane is high. The peak shapes of saturates are characterized by "prepeak" and "double peak", and the relative values of diasteranes and tricyclic terpanes are low in oils from upper layer of the Eh3 member. However, the peak shapes of saturates are characterized by "prepeak" and the relative content of diasteranes and tricyclic terpanes is high in oils from lower layer of the Eh3 member. For both the oils of Eh2 member and Eh3 member, the sedimentary environments are reductive and are sourced from higher plant and aquatic organism. However, the maturity of the oil from lower layer of Eh3 member is significantly higher than that of the oil from the upper layer of Eh3 member. In conclusion, the oils from the lower layer of Eh3 member are mainly sourced from the lower layer of Eh3 member, and the oils from the upper layer of Eh3 member are sourced from lower and upper layer of Eh3 member.

Key wordsShuanghe oilfield    crude oil    biomarkers    gas chromatography-mass spectrometry    oil-source rock correlations
收稿日期: 2018-12-20      出版日期: 2019-10-25
:  P632  
基金资助:国家科技重大专项子课题(2017ZX05049-005-005);国家青年科学基金项目(41402118);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0503);重庆市教委科学技术研究项目(KJQN201801502)
通讯作者: 高儇博
作者简介: 章新文(1984-),男,高级工程师,主要从事石油勘探地质综合研究工作。Email: 853804448@qq.com
引用本文:   
章新文, 高儇博, 杨云飞, 谢春安, 谭静娟. 泌阳凹陷双河油田原油地球化学特征及精细油—源对比研究[J]. 物探与化探, 2019, 43(5): 966-975.
Xin-Wen ZHANG, Xuan-Bo GAO, Yun-Fei YANG, Chun-An XIE, Jing-Juan TAN. Geochemistry and oil-source rock correlations in the Shuanghe oilfield, Biyang sag, Nanxiang basin. Geophysical and Geochemical Exploration, 2019, 43(5): 966-975.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1470      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/966
Fig.1  泌阳凹陷构造划分及研究区位置
井号 层位 深度/m 饱和烃含量/% 芳香烃含量/% 胶质+沥青质含量/% 饱芳比
双浅3 H21 884.8 52.62 15.69 31.79 3.35
双资1 H31 1345.8 72.51 10.70 16.80 6.78
双T121 H31 1411.3 64.63 15.49 19.87 4.17
双T306L H31 1378.0 71.90 16.27 11.83 4.42
双T306X H31 1378.0 68.98 16.91 14.12 4.08
双3240 H32 1457.1 62.67 15.20 22.13 4.12
双资1 H33 1586.8 64.93 14.73 20.32 4.41
双资1 H33 1614.2 57.97 12.05 29.98 4.81
双K3103 H33 1649.7 67.50 14.07 18.43 4.80
双资1 H34 1722.0 64.63 14.00 21.38 4.62
双资2 H34 1660.8 64.63 25.56 9.81 2.53
双资2 H34 1799.5 74.92 13.27 11.82 5.64
双JK452 H34 1730.2 68.50 11.38 20.12 6.02
双H417L H34 1752.9 71.98 11.76 16.26 6.12
双H417X H34 1752.9 76.10 9.61 14.30 7.92
双资2 H35 1965.4 79.79 9.80 10.39 8.14
双资2 H35 1891.7 66.17 14.59 19.24 4.54
双资2 H35 1901.0 73.44 19.08 7.48 3.85
双3-23 H35 1917.6 70.94 10.33 18.73 6.87
双H494 H35 1758.4 62.98 20.67 16.35 3.05
双资2 H36 2028.3 69.33 10.89 19.78 6.37
双资2 H36 2097.9 74.20 12.17 13.64 6.10
双T4-136 H36 1953.6 74.11 11.52 14.36 6.43
双观20 H37 2005.0 86.14 8.33 5.53 10.34
双10-107 H37 1918.8 68.84 12.60 18.56 5.46
双资2 H38 2342.3 77.09 9.88 13.03 7.80
双资2 H38 2388.7 62.34 7.32 30.34 8.51
新泌42 H38 2282.4 72.06 12.33 15.61 5.84
Table 1  双河油田原油族组分分析结果
Fig.2  双河油田典型原油样品正构烷烃GC-MS色谱(m/z 85)
井号 层位 深度/m Pr/
nC17
Ph/
nC18
Pr/
Ph
nC21-/
nC22+
主峰碳 OEP 低碳数甾烷/
规则甾烷
重排甾烷/
规则甾烷
C29S/
(S+R)
C29ββ/
(αα+ββ)
Ts/
Tm
C29M/
C30H
Tr/H C30G/
C30H
C24TeT/
C26Tr
双浅3 H21 884.8 0.53 2.88 0.38 1.43 C17 1.11 0.01 0.05 0.30 0.22 0.12 0.08 0.24 0.32 0.98
双资1 H31 1345.8 1.60 2.77 0.40 0.42 C25 1.06 0.02 0.11 0.45 0.35 0.58 0.06 0.13 0.26 0.53
双T121 H31 1411.3 0.49 1.45 0.41 1.35 C17 1.07 0.02 0.13 0.46 0.36 0.61 0.06 0.15 0.26 0.50
双T306L H31 1378 0.55 1.43 0.33 0.44 C27 1.01 0.04 0.11 0.49 0.36 0.50 0.14 0.22 0.21 0.49
双T306X H31 1377.95 0.53 1.42 0.31 0.39 C27 1.02 0.02 0.09 0.47 0.35 0.47 0.15 0.09 0.21 0.49
双3240 H32 1457.1 0.49 1.32 0.39 1.19 C17 0.96 0.03 0.11 0.47 0.37 0.54 0.05 0.16 0.26 0.51
双资1 H33 1586.8 0.95 1.71 0.42 0.41 C25 1.03 0.02 0.13 0.49 0.39 0.63 0.07 0.16 0.28 0.52
双资1 H33 1614.2 1.08 2.25 0.42 0.42 C23 1.06 0.02 0.09 0.46 0.35 0.54 0.04 0.12 0.20 0.61
双K3103 H33 1649.7 0.45 1.37 0.40 1.02 C17 0.96 0.02 0.12 0.47 0.37 0.59 0.05 0.12 0.22 0.52
双资1 H34 1722 1.09 2.16 0.38 0.31 C27 1.03 0.02 0.12 0.45 0.37 0.53 0.07 0.08 0.26 0.55
双资2 H34 1660.8 1.47 1.93 0.32 0.27 C18 0.94 0.06 0.17 0.55 0.54 1.41 0.33 0.67 0.38 0.43
双资2 H34 1799.5 0.88 1.02 0.67 0.51 C22 1.03 0.07 0.19 0.53 0.51 0.74 0.33 1.30 0.50 0.52
双JK452 H34 1730.2 0.56 1.51 0.44 1.33 C17 0.96 0.02 0.12 0.46 0.36 0.52 0.05 0.12 0.21 0.59
双H417L H34 1752.9 0.50 1.33 0.33 0.46 C27 1.02 0.03 0.10 0.50 0.38 0.53 0.15 0.14 0.19 0.52
双H417X H34 1752.9 0.55 1.42 0.33 0.39 C27 1.02 0.02 0.10 0.49 0.37 0.48 0.15 0.10 0.18 0.53
双资2 H35 1965.4 0.72 0.93 0.55 0.80 C21 1.05 0.08 0.16 0.52 0.52 0.73 0.22 1.40 0.97 0.32
双资2 H35 1891.7 1.42 1.90 0.45 0.46 C23 1.06 0.04 0.15 0.50 0.46 0.32 0.23 0.94 0.80 0.50
双资2 H35 1901 1.03 1.54 0.35 0.50 C23 1.06 0.02 0.15 0.50 0.43 0.24 0.23 1.29 0.73 0.44
双3-23 H35 1917.6 0.33 0.61 0.55 1.64 C18 0.95 0.08 0.19 0.56 0.55 1.45 0.30 0.85 0.26 0.43
双H494 H35 1758.4 0.62 1.77 0.46 1.58 C22 0.97 0.07 0.12 0.54 0.52 0.81 0.18 0.11 0.26 0.56
双资2 H36 2028.3 0.87 1.69 0.34 0.60 C22 1.09 0.06 0.17 0.50 0.47 0.39 0.30 1.27 0.83 0.34
双资2 H36 2097.9 0.86 1.41 0.46 1.05 C20 0.96 0.06 0.17 0.51 0.47 1.29 0.27 1.01 0.67 0.37
双T4-136 H36 1953.6 0.43 1.06 0.51 1.62 C17 1.05 0.04 0.13 0.49 0.43 3.35 0.19 0.96 0.71 0.42
双观20 H37 2005 0.46 1.31 0.42 1.73 C17 1.06 0.07 0.20 0.53 0.50 0.80 0.68 1.38 0.96 0.26
双10-107 H37 1918.8 0.43 1.26 0.44 1.67 C17 1.07 0.06 0.16 0.48 0.42 0.47 0.34 1.47 1.00 0.39
双资2 H38 2342.3 1.26 2.37 0.31 0.59 C22 1.05 0.06 0.21 0.51 0.55 0.51 0.62 1.65 0.90 0.32
双资2 H38 2388.7 1.14 2.42 0.39 0.53 C22 1.03 0.05 0.22 0.53 0.53 0.40 0.56 1.39 0.81 0.41
新泌42 H38 2282.4 0.59 1.93 0.32 2.70 C17 1.06 0.00 0.00 0.50 0.46 0.30 0.07 1.00 1.08 0.38
Table 2  双河油田原油生物标志化合物参数
Fig.3  双河油田原油Pr/Ph、Pr/nC17、Ph/nC18分布三角图
Fig.4  双河油田典型原油样品甾烷GC-MS色谱(m/z 217)
Fig.5  双河油田原油C27~C29αααR甾烷相对含量三角图
Fig.6  双河油田原油C29S/(S+R)和C29ββ/(αα+ββ)相关图
Fig.7  双河油田典型原油样品萜烷GC-MS色谱图(m/z 191)
Fig.8  双河油田典型烃源岩和原油正构烷烃GC-MS色谱图(m/z 85)
Fig.9  双河油田典型烃源岩和原油萜烷GC-MS色谱图(m/z 191)
Fig.10  双河油田典型烃源岩和原油甾烷GC-MS色谱图(m/z 217)
Fig.11  双河油田原油和烃源岩Pr/Ph、Pr/nC17、Ph/nC18分布三角图
Fig.12  双河油田原油和烃源岩C29S/(S+R)和C29ββ/(αα+ββ)参数分布
Fig.13  双河油田原油和烃源岩伽马蜡烷指数与Pr/Ph参数分布
Fig.14  双河油田原油和烃源岩伽马蜡烷指数与三环萜烷/17α(H)-藿烷参数分布
[1] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. UK: Cambridge University Press, 2005.
[2] 李祖兵, 颜其彬, 罗明高 . 非均质综合指数法在砂砾岩储层非均质性研究中的应用——以双河油田V下油组为例[J]. 地质科技情报, 2007(6):83-87.
[2] Li Z B, Yan Q B, Luo M G . Reservoir heterogeneity indication applied in researching for heterogeneity of the grail oil :An example of oil group below V in Shuanghe Oilfield[J]. Geological Science and Technology Information, 2007(6):83-87.
[3] 尹太举, 张昌民, 陈程 , 等. 建立储层流动单元模型的新方法[J]. 石油与天然气地质, 1999(2):74-79.
[3] Yin T J, Zhang C M, Chen C , et al. A new method for founding the model of flow unit reservoirs[J]. OIL & GAS GEOLOGY, 1999(2):74-79.
[4] 赵跃华, 王敏 . 双河油田储层孔隙结构特征分类及影响因素[J]. 石油学报, 1994(4):31-39.
[4] Zhao Y H, Wang M . Characteristics, classifications and affecting factors of reservoir pore structures in Shuanghe Oilfield[J]. ACTA PETROLEI SINICA, 1994(4):31-39.
[5] 尹太举, 张昌民, 赵红静 , 等. 依据高分辨率层序地层学进行剩余油分布预测[J]. 石油勘探与开发, 2001(4):79-82.
[5] Yin T J, Zhang C M, Zhao J H , et al. Remaining oil distribution prediction based on high-resolution sequence stratigraphy[J]. Petroleum Exploration and Development, 2001(4):79-82.
[6] 陆建林, 李国强, 樊中海 , 等. 高含水期油田剩余油分布研究[J]. 石油学报, 2001,22(5):48-52.
[6] Lu J L, Li G Q, Fan Z H , et al. Residual oil distribution research of high water-cut stage in an oilfield[J]. ACTA PETROLEI SINICR, 2001,22(5):48-52.
[7] 袁向春, 杨凤波 . 高含水期注采井网的重组调整[J]. 石油勘探与开发, 2003(5):94-96.
[7] Yuan X C, Yang F B . Regrouping adjusting of the producer-injector well-pattern in the high aquifer period of oilfield development[J]. Petroleum Exploration and Development, 2003(5):94-96.
[8] 张昌民, 尹太举, 张尚锋 , 等. 双河油田陆架型扇三角洲的沉积机理及向上变粗层序的成因[J]. 石油与天然气地质, 2005(1):99-103.
[8] Zhang C M, Yin T J, Zhang S F , et al. Sedimentary mechanism of shelf-type fan delta and genesis of coarsening-upward sequence in Shuanghe oilfield[J]. OIL &GAS GEOLOGY, 2005(1):99-103.
[9] 尹伟, 吴胜和, 林社卿 , 等. 双河油田油气成藏机理研究[J]. 石油学报, 2003(5):40-45.
[9] Yin W W, Wu S H, Lin S Q , et al. Study on mechanism of oil and gas accumulation in Shuanghe Oilfield[J]. ACTA PETROLEI SINICA, 2003(5):40-45.
[10] 林社卿, 杨道庆, 夏东领 , 等. 双河油田地球化学特征及成藏意义[J]. 石油天然气学报:江汉石油学院学报, 2005(2):162-165.
[10] Lin S Q, Yang D Q, Xia D L , et al. Geochemistry characteristics and significance of hydrocarbon accumulation in Shuanghe Oilfield[J]. Journal of Oil and Gas Technology, 2005(2):162-165.
[11] 董田, 何生, 林社卿 . 泌阳凹陷核桃园组烃源岩有机地化特征及热演化成熟史[J]. 石油实验地质, 2013(2):187-194.
[11] Dong T, He S, Lin S Q , et al. Organic geochemical characteristics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan Formation of Biyang Sag,Nanxiang Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013(2):187-194.
[12] 邱荣华, 林社卿, 涂阳发 . 泌阳凹陷油气成藏特征及勘探潜力分析[J]. 石油天然气学报:江汉石油学院学报, 2005(2):158-161.
[12] Qiu R H, Lin S Q, Tu Y F . Features of hydrocarbon accumulation and analysis on exploration potential in Biyang depression[J]. Journal of Oil and Gas Technology, 2005(2):158-161.
[13] Gao X, Zhu S, Zhang W , et al. Analysis of crude oils using gas purge microsyringe extraction coupled to comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry[J]. Fuel, 2016,182:788-797.
[14] Gao X, Pang L, Zhu S , et al. Gas purge microsyringe extraction coupled to comprehensive two-dimensional gas chromatography for the characterization of petroleum migration[J]. Organic Geochemistry, 2017,106:30-47.
[15] Huang H, Zhang S, Su J . Palaeozoic oil-source correlation in the Tarim Basin, NW China: A review[J]. Organic Geochemistry, 2016,94:32-46.
[1] 汤永梅, 邹长春, 秦菲莉, 李凤琴. 利用核磁共振和双频电阻率测井评价高矿化度地层水淹层[J]. 物探与化探, 2009, 33(6): 668-673.
[2] 刘伟, 胡斌, 于敦源, 程军. 我国重质油的三维荧光特征及其地质意义[J]. 物探与化探, 2004, 28(2): 123-125,129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com