Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 642-648    DOI: 10.11720/wtyht.2019.1437
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
抗坏血酸增敏—石墨炉原子吸收光谱法测定痕量铊的方法研究
焦圣兵1, 胡梦颖2,3, 杜雪苗2,3, 徐进力2,3()
1. 河北省区域地质矿产调查院,河北 廊坊 065000
2. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3. 联合国教科文组织 全球尺度地球化学国际研究中心,河北 廊坊 065000
The determination of trace thallium in soil by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) using ascorbic acid as a sensitizer
Sheng-Bing JIAO1, Meng-Ying HU2,3, Xue-Miao DU2,3, Jin-Li XU2,3()
1. Regional Geology Survey Institute of Hebei Province, Langf ang 065000, China
2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
3. UNESCO International Centre on Global-Scale Geochemistry, Langfang 065000, China
全文: PDF(2195 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用石墨炉原子吸收光谱法测定土壤中的痕量铊。比较了两种不同的样品分解体系,建立了一种使用HNO3+HF+H2SO4酸消解体系测量土壤中痕量铊的方法,同时探讨了石墨炉原子吸收光谱法测定铊的最佳仪器条件,并对基体改进剂浓度和体积、吸附解脱体系、吸附酸度以及震荡时间等条件进行了优化。该方法检出限为0.015×10 -6,RSD为5.49%~13.42%,方法经国家一级标准物质验证,结果准确可靠。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦圣兵
胡梦颖
杜雪苗
徐进力
关键词 石墨炉原子吸收光谱法抗坏血酸地球化学样品    
Abstract

A method for the pretreatment and determination of trace thallium in soil by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) with mixed acids sample digestion system was established. In this study, the authors investigated the optimum instrumental conditions for the determination and optimized the concentration and volume of the matrix modifier, adsorption-desorption system, adsorption acidity and the oscillation time. The detection limit was 0.015×10 -6, and the relative standard deviation was from 5.49% to 13.42%. The method was verified by National Standard Reference Material and the results were accurate and reliable.

Key wordsthallium    Graphite Furnace Atomic Absorption Spectrometry (GFAAS)    ascorbic acid    geochemical samples
收稿日期: 2018-11-23      出版日期: 2019-05-31
:  P632  
基金资助:国土资源部公益性行业科研专项经费(201211081)
通讯作者: 徐进力
作者简介: 焦圣兵(1976-),男,硕士,工程师,主要从事地质样品分析测试方法的研究工作。Email: 29341361@qq.com
引用本文:   
焦圣兵, 胡梦颖, 杜雪苗, 徐进力. 抗坏血酸增敏—石墨炉原子吸收光谱法测定痕量铊的方法研究[J]. 物探与化探, 2019, 43(3): 642-648.
Sheng-Bing JIAO, Meng-Ying HU, Xue-Miao DU, Jin-Li XU. The determination of trace thallium in soil by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) using ascorbic acid as a sensitizer. Geophysical and Geochemical Exploration, 2019, 43(3): 642-648.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1437      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/642
Fig.1  灯电流对吸光度和负高压的影响
Fig.2  通带宽度对吸光度和负高压的影响
Fig.3  Tl的灰化温度和原子化温度结果
Fig.4  样品分解方法对Tl测定结果的影响
Fig.5  吸附体系对样品回收率的影响
样品号 空白样 标准
偏差
检出限
1 2 3 4 5 6 7 8 9 10 11 12
测定值/10-6 0.005 0.004 0.014 0.005 0.011 0.018 0.005 0.004 0.005 0.004 0.008 0.005 0.005 0.015
Table 1  本次测试方法的检出限
样品号 标准物质(GBW)
07103 07104 07402 07446 07454 07309 07310 07336
1 1.75 0.17 0.51 0.56 0.50 0.46 0.19 1.16
2 1.62 0.18 0.56 0.49 0.56 0.47 0.19 0.98
3 1.82 0.17 0.54 0.60 0.53 0.45 0.22 0.95
4 1.54 0.16 0.54 0.50 0.63 0.41 0.18 1.06
5 1.81 0.19 0.62 0.57 0.50 0.51 0.22 0.96
6 1.56 0.13 0.55 0.47 0.53 0.53 0.21 1.10
7 1.71 0.22 0.58 0.55 0.61 0.47 0.19 1.13
8 1.83 0.16 0.54 0.53 0.65 0.41 0.20 1.07
9 1.69 0.19 0.56 0.54 0.54 0.55 0.23 0.98
10 1.95 0.14 0.60 0.49 0.59 0.52 0.19 1.00
11 1.81 0.18 0.55 0.60 0.63 0.42 0.21 1.08
12 1.76 0.18 0.53 0.55 0.66 0.55 0.18 1.07
平均值 1.74 0.17 0.56 0.54 0.58 0.48 0.20 1.04
标准偏差 0.12 0.02 0.03 0.04 0.06 0.05 0.02 0.07
RSD/% 6.90 13.42 5.49 7.98 9.75 10.98 8.35 6.76
标准值 1.93 0.16 0.62 0.51 0.59 0.49 0.20 1.05
ΔlgC -0.05 0.03 -0.05 0.02 -0.01 -0.01 0.00 0.00
Table 2  8份标准物质样品溶液的Tl含量及其精密度和准确度统计
[1] 卢荫庥, 王春风 . 塞曼效应无火焰原子吸收光谱法连续测定地球化学样品中微量铊和铟[J]. 物探与化探, 1993,16(4):304-312.
[1] Lu Y X, Wang C F . Continuous determination of trace Tl and In geochemical samples by Flameless Atomic Absorption Spectral Method of Zeeman Effect[J]. Geophysical & Geochemical Exploration, 1993,16(4):304-312.
[2] 孙晓玲, 胡瑞莲, 张勤 , 等. 泡沫塑料吸附—石墨炉原子吸收法测定地质物料中痕量Tl[J]. 光谱实验室, 1997,2(14):71-75.
[2] Sun X L, Hu R L, Zhang Q , et al. Determination of trace Thallium in geological materials by GFAAS after preconcentration by polyurethane foam[J]. Chinese Journal of Spectroscopy Laboratory, 1997,2(14):71-75.
[3] 林光西, 周泳德, 周康明 . 泡沫塑料富集—石墨炉原子吸收光谱法测定地质样品中微量铊[J]. 岩矿测试, 2006,25(4):377-380.
[3] Lin G X, Zhou Y D , ZhouU K M. Determination of trace Thallium in geological samples by plastic foam preconcentration Graphite Furnace Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2006,25(4):377-380.
[4] 刘峰, 秦樊鑫, 胡继伟 , 等. 活性炭吸附—石墨炉原子吸收光谱法测定土壤样品中铊[J]. 理化检验:化学分册, 2011,47(3):333-335.
[4] Liu F, Qin F X, Hu J W , et al. GFAAS determination of trace amount of Thallium in soil after adsorption with activated carbon[J]. PTCA(PART B: CHEM. ANAL, 2011,47(3):333-335.
[5] 姚坚, 金琴芳 . 火焰原子吸收光谱法连续测定废水中的银和铊[J]. 污染与防治技术, 2012,25(1):50-54.
[5] Yao J, Jin Q F . Determination of silver and Thallium in wastewater by Flame Atomic Absorption Spectrometry[J]. Pollotion control technology, 2012,25(1):50-54.
[6] 王龙山, 高登峰, 牟乃仓 , 等. 聚氨酯泡塑富集—石墨炉原子吸收分光光度法测定土壤样品中的痕量铊[J]. 陕西地质, 2008,26(2):103-108.
[6] Wang L S, Gao D F, Mu N C , et al. Determination of trace Thallium in soil samples by GFAAS with polyurethane foam[J]. Geology of Shanxi, 2008,26(2):103-108.
[7] 董迈青, 谢海东, 彭秀峰 , 等. 泡塑富集—石墨炉原子吸收光谱法测定地质样品中微量铊[J]. 光谱实验室, 2010,27(4):1560-1564.
[7] Dong M Q, Xie H D, Peng X F , et al. Determination of trace Thallium in geological samples by GFAAS with plastic foam preconcentration[J]. Chinese Journal of Spectroscopy Laboratory, 2010,27(4):1560-1564.
[8] 李奋, 吴文启, 谢晓雁 , 等. 离子交换分离—石墨炉原子吸收光谱法测定饮用水中痕量铊[J]. 理化检验:化学分册, 2015,51(12):1675-1679.
[8] Li F, Wu W Q, Xie X Y , et al. Determination of trace amount of Thallium in potable water by GFAAS with Ion-Exchange Separation[J]. PTCA(PART B: CHEM. ANAL, 2015,51(12):1675-1679.
[9] 鲁青庆 . 石墨炉原子吸收法测定有色冶炼环境水样中痕量铊[J]. 湖南有色金属, 2018,34(1):75-80.
[9] Lu Q Q . Graphite Furnace Atomic Absorption Spectrometry for determination of Thallium in Lead and Zinc melted industry waste water[J]. Hunan Nonferrous Metals, 2018,34(1):75-80.
[10] 周乐舟, 付胜, 余克平 , 等. 氧化石墨烯/硫杂杯芳烃复合材料富集分离—石墨炉原子吸收法测定痕量铊[J]. 分析测试学报, 2013,32(10):1242-1246.
[10] Zhou L Z, Fu S, Yu K P , et al. Determination of trace Thallium by Graphite Furnace Atomic Absorption Spectrometry after preconcentration with Graphene Oxide/Thiacalixarene composites material[J]. Journal of Instrumental Analysis, 2013,32(10):1242-1246.
[11] 张利群, 王晓辉, 宋晓春 , 等. 电感耦合等离子体原子发射光谱法测定锑精矿中铅硒碲铊[J]. 冶金分析, 2012,32(4):50-53.
[11] Zhang L Q, Wang X H, Song X C , et al. Determination of plumbum, selenium, tellurium, thallium in antimony concentrates bt inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012,32(4):50-53.
[12] 胡芳, 黄慧敏, 禹颖 , 等. 电感耦合等离子体质谱法测定土壤中痕量铊的方法研究[J]. 广州化学, 2016,41(6):42-45.
[12] Hu F, Huang H M, Yu Y , et al. Research of trace Thallium in soil by ICP-MS[J]. Guangzhou Chemistry, 2016,41(6):42-45.
[13] 张勤, 刘亚轩, 吴健玲 . 电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊[J]. 岩矿测试, 2003,22(1):21-27.
[13] Zhang Q, Liu Y X, Wu J L . Simultaneous determination of Gallium, Indium and Thallium in geochemical samples by Inductively Coupled Plasma Mass Spectrometry[J]. Rock and Mineral Analysis, 2003,22(1):21-27.
[14] 徐进力, 邢夏, 郝志红 , 等. 聚氨酯泡塑吸附—电感耦合等离子体质谱法测定地球化学样品中铊[J]. 岩矿测试, 2012,31(3):430-433.
[14] Xu J L, XIin X, Hao Z H , et al. Determination of Thallium in geochemical samples by Inductively Coupled Plasma-Mass Spectrometry with Polyurethane Foam Adsorption[J]. Rock and Mineral Analysis, 2012,31(3):430-433.
[15] 孙朝阳, 董利明, 贺颖婷 , 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验:化学分册, 2016,52(9):1026-1030.
[15] Sun C Y, Dong L M, He Y T , et al. Elimination of interference in ICP-MS determination of Sc,Ga,Ge,In,Cd and Tl in geological samples[J]. PTCA(PartB:CHEM.ANAL), 2016,52(9):1026-1030.
[16] Dadfarnia S, Assadollahi T , Haji Shabani A M . Speciation and determination of thallium by on-linemicrocolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent[J]. Journal of Hazardous Materials, 2007,148:446-452.
doi: 10.1016/j.jhazmat.2007.02.059
[17] Dadfarnia S, Assadollahi T , Haji Shabani A M. On-line preconcentration of ultra-trace thallium(I)in water samples with titanium dioxide nanoparticles and determination by graphite furnace atomic absorption spectrometry[J]. Arabian Journal of Chemistry, 2012: 1-7.
[18] 邢夏, 徐进力, 陈海杰 , 等. 抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J]. 岩矿测试, 2015,34(3):319-324.
[18] XIing X, Xu J L, Chen H J , et al. Determination of trace gold in plant samples from a gold mining area by Graphite Furnace Atomic Absorption Spectrometry with ascorbic acid as the matrix modifier[J]. Rock and Mineral Analysis, 2015,34(3):319-324.
[1] 严己宽, 玉强忠. 地球化学勘查固体样品采集的野外质量评价指标[J]. 物探与化探, 2018, 42(6): 1112-1115.
[2] 刘敬勇, 常向阳, 涂湘林. 元素-铅同位素示踪在云浮硫铁矿区 土壤铊污染研究中的应用[J]. 物探与化探, 2006, 30(4): 348-353.
[3] 卢荫庥, 白金峰. 元素活动态测量的分析方法[J]. 物探与化探, 2000, 24(1): 28-33.
[4] 陈遵德, 王玲. 地球化学样品分类的RS方法[J]. 物探与化探, 1998, 22(5): 348-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com