Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 598-607    DOI: 10.11720/wtyht.2019.1383
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于L-BFGS反演算法的ΔT精确计算磁异常分量Tap方法
甄慧翔, 杨宇山(), 李媛媛, 刘天佑
中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
Method for accurately calculating magnetic anomaly component using ΔT based on L-BFGS inversion algorithm
Hui-Xiang ZHEN, Yu-Shan YANG(), Yuan-Yuan LI, Tian-You LIU
Institute of Geophysics and Geomatics, China University of Geosciences(Wuhan), Wuhan 430074, China
全文: PDF(6013 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

磁法勘探理论中,将ΔT磁异常看作磁异常矢量Ta在地磁场方向的分量Tap,是ΔT异常处理与解释的物理基础,然而这种近似存在误差,理论计算及实验已经证明这种近似所产生的误差将随着Ta异常强度的增大而迅速增加。当磁异常Ta远小于地磁场T0时,误差影响小,可忽略,在强磁异常情况下,误差大,ΔT异常的处理解释精度会受到很大的影响。对于高精度磁法勘探而言,必须将ΔT转换成磁异常分量Tap进行处理解释。笔者提出了基于有限储存BFGS(L-BFGS)反演算法的ΔT精确计算磁异常分量方法,首先推导了Tap计算ΔT的正演公式,利用ΔTTap的差值构建反演Tap的目标函数,采用L-BFGS算法由ΔT解算Tap。模型实验表明该方法计算得到的Tap十分接近理论值,即可将误差降低两个数量级。在存在噪声与背景场情况下该方法也都能得到很好的结果。将本方法应用于福建阳山铁矿ΔT磁测资料的处理,得到了与实际更加符合的处理解释结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甄慧翔
杨宇山
李媛媛
刘天佑
关键词 强磁异常总场异常ΔT磁异常分量Tap高精度处理解释L-BFGS    
Abstract

In the magnetic exploration theory, total-field anomaly ΔT is regarded as the component Tap of the magnetic anomaly vector Ta on the main field (T0) direction and thus constitutes the theoretical basis. However, there is an error in this approximation. Theoretical calculations and experiments have proved that this approximation error will increase rapidly as the Ta increases. When the magnetic anomaly Ta is much smaller than T0, the influence of the error is small and negligible. In the case of a strong magnetic anomaly, the error is large, and the processing interpretation accuracy of the ΔT anomaly is greatly affected. For high-precision magnetic exploration, ΔT must be converted to a magnetic anomaly component Tap for processing and interpretation. In this paper, the method of accurately calculating the magnetic anomaly component using Tap based on the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm is proposed. Firstly, the authors derived the forward formula for ΔT from Tap, and then constructed the objective function of Tap inversion by the difference function between ΔT and Tap. L-BFGS algorithm was used to solve the Tap from ΔT. Model experiments show that the Tap calculated by this method is very close to the real value, which can reduce the error by two orders of magnitude. This method also yields good results in the presence of noise and background fields. The method was applied to the processing of ΔT magnetic survey data of the Yangshan iron mine in Fujian Province, and the results of processing and interpretation which are more consistent with the actual results were obtained.

Key wordsmagnetic anomaly    total-field anomaly ΔT    magnetic anomaly component Tap    high-precision processing and interpretation    L-BFGS
收稿日期: 2018-10-24      出版日期: 2019-05-31
:  P631  
基金资助:国家重点研发计划项目“华北克拉通辽东/胶东重要成矿区带金多金属矿深部预测及勘查示范”下设课题“空—地—井立体探测技术方法构建与示范”(2018YFC0603803)
通讯作者: 杨宇山
作者简介: 甄慧翔(1995-),男,汉族,硕士研究生,主要从事重磁资料处理及反演研究工作。Email: zhenhx1995@163.com.
引用本文:   
甄慧翔, 杨宇山, 李媛媛, 刘天佑. 基于L-BFGS反演算法的ΔT精确计算磁异常分量Tap方法[J]. 物探与化探, 2019, 43(3): 598-607.
Hui-Xiang ZHEN, Yu-Shan YANG, Yuan-Yuan LI, Tian-You LIU. Method for accurately calculating magnetic anomaly component using ΔT based on L-BFGS inversion algorithm. Geophysical and Geochemical Exploration, 2019, 43(3): 598-607.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1383      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/598
Fig.1  总场异常ΔT及其他相关物理量关系示意
Fig.2  强磁异常情况下ΔTTap化极结果对比
a—球体模型ΔT;b—球体模型Tap;c—球体模型ΔT化极结果;d—球体模型Tap化极结果;红圈表示球体模型投影,黑点表示球体模型的中点
模型 中心X坐标
/m
中心Y坐标
/m
半径
/m
中心埋深
/m
磁化强度J
/(A·m-1)
单球体模型 50 50 250 300 120
组合模型A -300 300 250 350 120
组合模型B 300 -300 400 500 120
Table 1  模型几何参数和磁化强度
Fig.3  模型水平面与剖面投影
a—单球体模型;b—组合球体模型
Fig.4  单球体模型Tap、ΔT和计算得到的磁异常分量Tap对比
a—磁异常在地磁场方向上的投影分量Tap;b—总场异常ΔT;c—反演得到的磁异常分量Tap;
Fig.5  单球体模型反演误差
a—ΔTTap的差值(即初始偏差);b—反演得到的Tap与理论Tap存在的偏差
Fig.6  反演得到的磁异常分量Tap的化极结果
图中红圈表示球体模型投影,黑点表示球体模型的中点
Fig.7  组合球体模型Tap、ΔT和反演得到的磁异常分量Tap对比
a—磁异常在地磁场方向上的投影分量Tap;b—总场异常ΔT;c—反演得到的磁异常分量Tap;
Fig.8  组合球体模型反演误差
a—ΔTTap的差值(即初始偏差);b—反演得到的Tap与理论Tap存在的偏差
Fig.9  反演得到的磁异常分量Tap的化极结果
红圈表示球体模型投影,黑点表示球体模型的中点
Fig.10  弱磁异常条件下组合球体模型反演得到的Tap误差
a—ΔTTap的差值(即初始偏差);b—反演得到的Tap与理论Tap存在的偏差
Fig.11  叠加噪声的模型实验
a—0~100 nT随机噪声;b—叠加了随机噪声的ΔT的近似误差; c—叠加噪声的ΔT反演得到的Tap存在的误差; d—反演得到的Tap消出噪声后的误差结果
Fig.12  叠加背景场的模型实验
a—背景场;b—叠加了背景场的ΔT的近似误差;c—反演得到的Tap存在的误差;d— 反演得到的Tap消除背景场后的误差结果
Fig.13  阳山铁矿实测ΔT化极结果与计算得到的Tap化极结果对比
a—实测资料ΔT化极结果;b—计算得到的Tap化极结果;c—二者化极结果的差值
Fig.14  阳山铁矿ΔT与计算得到的Tap剖面反演对比
a—沿剖面AB,ΔT化极和Tap化极曲线及其反演拟合结果;b—观测得到的ΔT数据反演结果;c—计算得到的Tap数据反演结果;见矿钻孔ck40、ck42,未见矿钻孔ck39、zk4298
[1] Parasnis D S . Principles of Applied Geop[M]. Berlin: Springer Netherlands, 1979.
[2] 管志宁 . 我国磁法勘探的研究与进展[J]. 地球物理学报, 1997,40(1):299-307.
[2] Guan Z N . Research and development of magnetic law exploration in China[J]. Chinese Journal of Geophysics, 1997,40(1):299-307.
[3] Blakely R J. Potential theory in gravity and magnetic applications[M]. Cambridge: Cambridge University Press, 1995.
[4] 管志宁 . 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
[4] Guan Z N. Geomagnetic field and magnetic exploration [M]. Beijing: Geological Press, 2005.
[5] 刘天佑 . 磁法勘探[M]. 北京: 地质出版社, 2013.
[5] Liu T Y. Magnetic exploration[M]. Beijing: Geological Press, 2013.
[6] Hinze P W J, Von Frese R R B, Saad A H . Gravity and magnetic exploration: principles, practices, and applications[M]. Cambridge: Cambridge University Press, 2013.
[7] 塔费耶夫 . 金属矿床的地球物理勘探文选[M]. 北京: 地质出版社. 1954.
[7] Tafeev. A geophysical exploration of metal deposits[M]. Beijing: Geological Publishing House. 1954.
[8] 袁晓雨, 姚长利, 郑元满 , 等. 强磁性体ΔT异常计算的误差分析研究[J]. 地球物理学报, 2015,58(12):4756-4765.
[8] Yuan X Y, Yao C L, Zheng Y M , et al. Error analysis of ΔT anomaly calculation of ferromagnetic body[J]. Chinese Journal of Geophysics, 2015,58(12):4756-4765.
[9] 袁晓雨 . 强磁异常ΔT的计算误差及高精度处理转换分析研究[D]. 中国地质大学 (北京), 2016.
[9] Yuan X Y . Research on calculation error and high-precision processing conversion analysis of strong magnetic anomaly ΔT [D]. China University of Geosciences ( Beijing), 2016.
[10] Baranov W A . New method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies[J]. Geophysics, 1957,22(2):359-383.
doi: 10.1190/1.1438369
[11] Bhattacharyya B K . Two-dimensional harmonic analysis as a tool for magnetic interpretation[J]. Geophysics, 1965,30(5):829-857.
doi: 10.1190/1.1439658
[12] 袁亚湘, 孙文瑜 . 最优化理论与方法[M]. 北京: 科学出版社, 1997.
[12] Yuan Y X, Sun W Y. Optimization theory and method[M]. Beijing: Science Press, 1997.
[13] Sun W, Yuan Y X . Optimization theory and methods[M]. New York: Springer US, 2006: 175-200.
[14] 姚姚 . 地球物理反演[M]. 北京: 中国地质大学出版社, 2002.
[14] Yao Y. Geophysical inversion[M]. Beijing: China University of Geosciences Press, 2002.
[15] 王家映 . 地球物理反演理论[M]. 北京: 高等教育出版社, 2002.
[15] Wang J Y , Geophysical inversion theory[M]. Beijing: Higher Education Press, 2002.
[16] Avdeeva A, Avdeev D . A limited-memory quasi-Newton inversion for 1D magnetotellurics[J]. Geophysics, 2006,71(5):G191-G196.
doi: 10.1190/1.2236381
[17] 张生强, 刘春成, 韩立国, 等 . 基于 L-BFGS 算法和同时激发震源的频率多尺度全波形反演[J]. 吉林大学学报: 地球科学版, 2013,43(3):1004.
[17] Zhang S Q, Liu C C, Han L G , et al. Frequency multi-scale full waveform inversion based on L-BFGS algorithm and simultaneous excitation source[J]. Journal of Jilin University: Earth Science Edition, 2013,43(3):1004.
[18] Broyden C G . The convergence of a class of double-rank minimization algorithms[J]. Journal of the Institute of Mathematics and Its Applications, 1970(6):76-90.
[19] Fletcher R . A new approach to variable metric algorithms[J]. Computer Journal, 1970,13(3):317-322.
doi: 10.1093/comjnl/13.3.317
[20] Goldfarb D . A family of variable metric updates derived by variational means[J]. Mathematics of Computation, 1970,24(109):23-26.
doi: 10.1090/S0025-5718-1970-0258249-6
[21] Shanno D F . Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970,24(111):647-656.
doi: 10.1090/S0025-5718-1970-0274029-X
[22] Zheng Y K, Wang Y, Chang X . Wave-equation traveltime inversion: comparison of three numerical optimization methods[J]. Computers & Geosciences, 2013,60(10):88-97.
[23] Fabien-Ouellet G, Gloaguen E, Giroux B . A stochastic L-BFGS approach for full-waveform inversion[J]. Seg Technical Program Expanded, 2017: 1622-1627.
[24] Dong C, Liu J N . On the limited memory BFGS method for large scale optimization[J]. Mathematicial Programming, 1989,45(1-3):503-528.
doi: 10.1007/BF01589116
[25] Nocedal J . Upgrading quasi-newton matrices with limited storage[J]. Mathematics of Computation, 1980,35(151):773-782.
doi: 10.1090/S0025-5718-1980-0572855-7
[26] Nocedal J, Wright S J . Numerical optimization[M]. New York: Springer, 2006.
[27] Pan W, Innanen K A, Liao W . Accelerating hessian-free gauss-newton full-waveform inversion via L-BFGS preconditioned conjugate-gradient algorithm[J]. Geophysics, 2017,82(2):R49-R64.
doi: 10.1190/geo2015-0595.1
[1] 黄兴国, 孙建国, 孙章庆, 王乾龙. 基于L-BFGS理论求解复程函方程的地震波复走时计算方法[J]. 物探与化探, 2016, 40(5): 961-967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com