Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 584-588    DOI: 10.11720/wtyht.2019.1312
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
大回线源瞬变电磁一维自适应反演方法及应用
姚伟华
中煤科工集团 西安研究院有限公司,陕西 西安 710077
The one-dimensional adaptive inversion method for large loop source TEM and its application
Wei-Hua YAO
Xi’an Research Institute of China Coal Technology & Engineering Group,Xi’an 710077,China
全文: PDF(1371 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

提出了一种适用于大回线源瞬变电磁法框内任意测点垂直Z分量的一维反演方法。该算法采用CMD正则化因子优化方案、光滑度函数和自然边界条件对反演过程进行了约束,减小了初值的依赖度,保证了反演过程的自主性和反演结果的稳定性;在反演过程中,在保证模型残差沿梯度下降的同时,对模型修正量的最大值进行了限制,使反演模型不易陷入局部极小,保证了反演结果全局的收敛性;同时反演的灵敏度矩阵采用牛顿法进行更新,减少了整个反演计算的工作量。最后通过五层的双低阻层模型、双高阻层模型和实测资料证明了该算法可靠。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚伟华
关键词 瞬变电磁法自适应一维约束反演    
Abstract

A one-dimensional inversion method for the vertical Z component of any measuring point in the frame of the large loop source transient electromagnetic method is proposed in this paper. The algorithm uses the CMD regularization factor optimization scheme, smoothness function and natural boundary conditions to constrain the inversion process, reduce the initial value dependence, and ensure the autonomy of the inversion process and the stability of the inversion results. In the inversion process, while ensuring that the model residual decreases along the gradient, the maximum value of the model correction is limited, so that the inversion model is not easy to fall into the local minimum, which ensures the global convergence of the inversion results. The sensitivity matrix is updated by Newton's method, thus reducing the workload of the entire inversion calculation. Finally, the reliability of the algorithm is guaranteed by five-layer double low-resistance layer model, double high-resistance layer model and measured data.

Key wordsTEM    adaptive    one-dimensional constraint inversion
收稿日期: 2018-09-03      出版日期: 2019-05-31
:  P631  
基金资助:国家重点基础研究发展计划(973计划)资助项目(2017YFC0804100);中国煤炭科工集团有限公司科技创新创业资金专项(2018MS006)
引用本文:   
姚伟华. 大回线源瞬变电磁一维自适应反演方法及应用[J]. 物探与化探, 2019, 43(3): 584-588.
Wei-Hua YAO. The one-dimensional adaptive inversion method for large loop source TEM and its application. Geophysical and Geochemical Exploration, 2019, 43(3): 584-588.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1312      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/584
Fig.1  双低阻层模型反演结果(a)及晚期视电阻率拟合结果(b)
Fig.2  双高阻层模型反演结果(a)及晚期视电阻率拟合结果(b)
Fig.3  大回线源瞬变电磁28线工作布置
Fig.4  大回线瞬变电磁28线反演电阻率断面
[1] 薛国强, 于景邨 . 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017,32(1):319-326.
[1] Xue G Q, Yu J C . New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017,32(1):0319-0326.
[2] 程建远, 石显新 . 中国煤炭物探技术的现状与发展[J]. 地球物理学进展, 2013,28(4):2024-2032.
doi: 10.6038/pg20130446
[2] Chen J Y, Shi X X . Current status and development of coal geophysical technology in China[J]. Progress in Geophys, 2013,28(4):2024-2032.
[3] 陈卫营, 薛国强 . 瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J]. 地球物理学进展, 2013,28(5):2709-2717.
doi: 10.6038/pg20130554
[3] Chen W Y, Xue G Q . Application on coal-mine voids detection with multi-device TEM technology[J]. Progress in Geophys, 2013,28(5):2709-2717.
[4] 赵越, 李貅, 王祎鹏 . 大回线源瞬变电磁全域视电阻率定义[J]. 地球物理学进展, 2015,30(4):1856-1863.
[4] Zhao Y, Li X, Wang Y P . Full-domain apparent resistivity definition for large-loop TEM[J]. Progress in Geophys, 2015,30(4):1856-1863.
[5] 薛国强, 李貅, 底青云 . 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展, 2008,23(4):1165-1172.
doi:
[5] Xue G Q, Li X, Di Q Y . Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophys, 2008,23(4):1165-1172.
[6] 刘晓 . 瞬变电磁法三维正演及非线性共轭梯度反演研究[D]. 北京:中国地质大学( 北京), 2016.
[6] Li X . Study of Three-dimensional TEM Forward Modeling and Non-linear Conjugate Gradients Inversion [D]. Beijing: China University of Geosciences( Beijing), 2016.
[7] 戴锐, 张达, 冀虎 . 大定源瞬变电磁法反演效果分析[J]. 有色金属:矿山部分, 2017,69(3):1-4.
[7] Dai R, Zhang D, Ji H . Analysis of Large loop transient electromagnetic method inversion effect[J]. Nonferrous Metals:Mining Section, 2017,69(3):1-4.
[8] 张维 . 大定源瞬变电磁法一维正反演研究[D]. 长沙:中南大学, 2013.
[8] Zhang W . The Study about 1D Forward and Inversion of large loop TEM[D]. Changsha:Central South University, 2013.
[9] 徐玉聪, 赵宁, 秦策 , 等. 大定源瞬变电磁一维自适应正则化反演[J]. 地质与勘探, 2015,51(2):360-365.
[9] Xu Y C, Zhao N, Qin C , et al. One-dimensional adaptive regularization inversion of transient electromagnetic sounding with a large fixed source[J]. Geology and Exploration, 2015,51(2):360-365.
[10] 翁爱华 . Occam反演及其在瞬变电磁测深申的应用[J]. 地质与勘探, 2007,43(5):74-76.
[10] Weng A H . OCCAM’s inversion and its application to transient electromagnetic method[J]. Geology and Prospecting, 2007,43(5):74-76.
[11] 周道卿, 谭捍东, 王卫平 . 频率域航空电磁资料Occam反演研究[J]. 物探与化探, 2006,30(2):71-74.
[11] Zhou D Q, Tan H D, Wang W P . The OCCAM inversion in faem data processing[J]. Geophysical and Geochemical Exploration, 2006,30(2):71-74.
[12] 李明星, 肖林通, 张倚瑞 , 等. 瞬变电磁粒子群优化反演研究[J]. 煤炭技术, 2014,33(9):302-304.
[12] Li M X, Xiao L T, Zhang Y R , et al. Research on particle swarm optimization inversion of transient electromagnetic method[J]. Coal Technology, 2014,33(9):302-304.
[13] Constable S C, Parker R L, Constable C G . Occam’s inversion: A practical algorithm for generating smooth model from electromagnetic sounding data[J]. Geophysics, 1987,52(2):289.
doi: 10.1190/1.1442303
[14] 毛立峰, 王绪本, 陈斌 . 直升机航空瞬变电磁自适应正则化一维反演方法研究[J]. 地球物理学进展, 2011,26(1):300-305.
doi: 10.3969/j.issn.1004-2903.2011.01.035
[14] Mao L F, Wang X B, Chen B . Study on an adaptive regularized 1D inversion method of helicopter TEM data[J]. Progress in geophys., 2011,26(1):300-305.
[15] 陈小斌, 赵国泽, 汤吉 , 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005,48(4):937-946.
[15] Chen X B, Zhao G Z, Tang J , et al. An adaptive regularized inversion algorithm for magnetotelluric data. Chinese[J]. Geophys., 2005,48(4):937-946.
[16] 李刚, 潘和平, 王智 , 等. 回线源瞬变电磁法一维反演算法[J]. 煤田地质与勘探, 2017,45(5):161-166.
[16] Li G, Pan H P, Wang Z , et al. One-dimensional inversion for loop source transient electromagnetic method[J]. Coal Geology & Exploration, 2017,45(5):161-166.
[1] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[2] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[3] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[4] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[5] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[6] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[7] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
[8] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[9] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[10] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[11] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[12] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[13] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[14] 蔡泽园, 鲁宝亮, 熊盛青, 王万银. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4): 919-927.
[15] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com