Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 393-400    DOI: 10.11720/wtyht.2019.1297
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
ZTEM二维非线性共轭梯度反演研究
许智博1, 谭捍东2
1. 北华大学 土木与交通学院,吉林 吉林 132013
2. 中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Two-dimensional nonlinear conjugate gradient inversion of ZTEM
Zhi-Bo XU1, Han-Dong TAN2
1. Civil and Transportation College of Beihua University, Jilin 132013, China
2. School of Geophysics and Information Technology, China University of Geoscience (Beijing), Beijing 100083, China
全文: PDF(1892 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

ZTEM(Z轴倾子电磁法)是一种天然场源的频率域航空电磁法,其特点是磁场垂直分量在空中机载平台测量,磁场水平分量在地面的固定基站测量,具有勘探深度大、速度快、成本低、覆盖面积大等技术优势。本文实现了ZTEM二维有限差分正演和二维非线性共轭梯度(NLCG)反演算法。研究对象是倾子资料,反演过程中通过解“拟正演”问题来避开雅克比矩阵的直接计算。通过理论模型合成数据反演试算,验证了ZTEM倾子资料二维NLCG反演算法的稳定性与可靠性。与大地电磁(MT)TE模式阻抗资料反演结果进行对比,发现在异常体横向边界的约束方面,ZTEM倾子反演比MT阻抗反演更具优越性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许智博
谭捍东
关键词 ZTEM倾子航空电磁法二维反演非线性共轭梯度法    
Abstract

The ZTEM (Z-Axis Tipper Electromagnetics) is a frequency-domain airborne electromagnetic method that results from natural sources. It has the feature that the vertical component of magnetic field is measured from a moving helicopter platform and the horizontal component of magnetic field is measured at a reference station on the ground. In addition, it has the advantages of deep exploration, fast speed, low cost and large coverage area. This paper realizes the 2D finite difference forward modeling and NLCG inversion of ZTEM. The object of the study is the tipper data. The direct calculation of Jacobian matrix is avoided by solving the "quasi-forward" problem in the inversion process. The stability and reliability of the 2D NLCG inversion of ZTEM tipper data are verified by the trial calculation of synthetic data inversion of theoretical model. A comparison with the inversion result of impedance data of magnetotelluric (MT) TE mode shows that the ZTEM tipper inversion is superior to the MT impedance inversion in the constraint of the lateral boundary of the anomalous body.

Key wordsZ-Axis Tipper Electromagnetics    tipper    airborne electromagnetic survey    2D inversion    NLCG
收稿日期: 2018-08-10      出版日期: 2019-04-10
:  P631  
基金资助:国家重点研发计划课题“综合航空地球物理数据处理;解释和管理软件平台研发”(2017YFC0602204);国家自然科学基金(41830429)联合资助
作者简介: 许智博(1990-),男,硕士,助教,主要从事电法勘探、数值模拟算法研究。Email: 283483358@qq.com;
引用本文:   
许智博, 谭捍东. ZTEM二维非线性共轭梯度反演研究[J]. 物探与化探, 2019, 43(2): 393-400.
Zhi-Bo XU, Han-Dong TAN. Two-dimensional nonlinear conjugate gradient inversion of ZTEM. Geophysical and Geochemical Exploration, 2019, 43(2): 393-400.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1297      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I2/393
Fig.1  二维目标体模型
Fig.2  二维模型倾子响应的二维有限差分数值解与三维数值解的对比
Fig.3  单个异常体模型示意
Fig.4  拟合差随迭代次数收敛曲线
Fig.5  对单个异常体模型产生的ZTEM倾子数据进行反演的结果
Fig.6  对单个异常体模型产生的MT阻抗数据进行反演的结果
Fig.7  两个异常体模型示意
Fig.8  拟合差随迭代次数收敛曲线
Fig.9  对两个异常体模型产生的ZTEM倾子数据进行反演的结果
Fig.10  对两个异常体模型产生的MT阻抗数据进行反演的结果
[1] Mackie R L, Madden T R . Three-dimensional magnetotelluric inversion using conjugate gradients[J]. Geophysics.J.Int., 1993,115:215-229.
doi: 10.1111/j.1365-246X.1993.tb05600.x
[2] Rodi W, Mackie R L . Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001,1(1):174-187.
[3] Lin C H, Tan H D, Tong T . Three-dimensional conjugate gradient inversion of magnetotelluric sounding data[J]. Applied Geophysics (in Chinese), 2008,5(4):314-321.
doi: 10.1007/s11770-008-0043-1
[4] Ward S H . AFMAG—airborne and ground[J]. Geophysics, 1959,24(4):761-787.
doi: 10.1190/1.1438657
[5] Ward S H, O’Donnell J, Rivera R ,et al.AFMAG-application and limitation[J]. Geophysics, 1966,31(3):576-605.
doi: 10.1190/1.1439795
[6] Lo B, Zang M. Numerical modeling of Z-TEM (airborne AFMAG) responses to guide exploration strategies [C]// 78th International Exposition and Annual Meeting, SEG, Expanded Abstracts, 2008, 1098-1102.
[7] Labson V F, Becker A, Morrison H F , et al. Geophysical exploration with audiofrequency natural magnetic fields[J]. Geophysics, 1985,50(4):656-664
doi: 10.1190/1.1441940
[8] 吴頔 . 二维及三维倾子响应和异常体识别[D]. 长沙:中南大学, 2012.
[8] Wu D . 2D and 3D tipper response and abnormal body recognition[D]. Changsha: Central South University, 2012.
[9] 余年, 王绪本, 阚瑷珂 , 等. 倾子和视倾子的研究及在断裂解释中的应用[J]. 工程地物学报, 2007,4(4):275-281.
doi: 10.3969/j.issn.1672-7940.2007.04.002
[9] Yu N, Wang X B, Kan Y K , et al .Research on tilter and apparent tilter and its application in fracture interpretation[J]. Geophysical and Geochemical Exploration, 2007,4(4):275-281.
[10] 林昌洪, 谭捍东, 佟拓 . 倾子资料三维共轭梯度反演研究[J]. 地球物理学报, 2011,54(4):1106-1113.
doi: 10.3969/j.issn.0001-5733.2011.04.026
[10] Lin C H, Tan H D, Tong T . 3D conjugate gradient inversion of dipper data[J]. Applied Geophysics, 2011,54(4):1106-1113.
[11] Holtham E, Oldenburg D W . Three-dimensional inversion of ZTEM data[J]. Geophysical Journal International, 2010,182:168-182.
[12] Holtham E, Oldenburg D W. Three-dimensional inversion of MT and ZTEM data [C]// 80th Ann Internet Mtg, SEG,Expanded Abstracts, 2010: 655-659.
[13] Wang T, Tan H D, Li Z Q , et al. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. Applied Geophysics (in Chinese), 2016,13(3):553-560.
doi: 10.1007/s11770-016-0566-9
[14] 王绪本 . 二维大地电磁测深资料处理与反演解释方法研究[D]. 成都:成都理工大学, 2002.
[14] Wang X B . Research on processing and inversion interpretation method of two-dimensional magnetotelluric sounding data[D]. Chengdu:Chengdu University of Technology, 2002.
[15] Madden T R . Transmission systems and network analogies to geophysical forward and inverse problems[M]. ONR Technical Report, 1972: 72-3.
[16] 胡文宝, 苏朱刘, 陈清礼 , 等. 倾子资料的特征及应用[J]. 石油地球物理勘探, 1997,32(2):202-213.
[16] Hu W B, Su Z L, Chen Q L , et al. Characteristics and application of tilter data[J]. Oil Geophysical Prospecting, 1997,32(2):202-213.
[17] 陈小斌, 赵国泽, 詹艳 , 等. 磁倾子矢量的图示分析及其应用研究[J]. 地学前缘, 2004,1(4):626-636.
doi: 10.3321/j.issn:1005-2321.2004.04.030
[17] Chen X B, Zhao G Z, Zhan Y , et al. Analysis of tipper visual vectors and its application[J]. Geoscience Frontiers, 2004,1(4):626-636.
[18] 陈清礼, 胡文宝, 李金铭 , 等. 埋藏球体的倾子响应特征分析[J]. 石油天然气学报, 2007,29(3):75-78.
[18] Chen Q l, Hu W B, Li J M , et al. Analysis of tipper response characteristics of buried sphere[J]. Journal of Oil and Gas Technology, 2007,29(3):75-78.
[19] 马为 . MT 二维正演中辅助场计算新方法研究[R]. 中国地震局地质研究所, 2007.
[19] Ma W . A new method for calculating auxiliary field in MT two-dimensional forward modeling[R].Institute of Geology, China Earthquake Administration, 2007.
[20] 陈小斌 . MT二维正演计算中地形影响的研究[J]. 石油物探, 2000,39(3):112-120.
doi: 10.3969/j.issn.1000-1441.2000.03.015
[20] Chen X B . Research on terrain effect in MT two-dimensional forward modeling[J]. Oil Exploration, 2000,39(3):112-120.
[1] 刘彦涛, 彭莉红, 孙栋华, 张伟盟, 王海红. 基于三维有限元的航空大地电磁倾子响应特征[J]. 物探与化探, 2021, 45(5): 1329-1337.
[2] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[3] 李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
[4] 李飞, 谭捍东, 孟庆敏, 吴俊彦, 丁志强. 二连—东乌旗地区固定翼三频航电数据反演方法应用对比研究[J]. 物探与化探, 2020, 44(5): 1172-1182.
[5] 王志宏, 江民忠, 彭莉红, 程莎莎. 航空大地电磁法在辽宁省丹东地区的应用[J]. 物探与化探, 2020, 44(4): 734-741.
[6] 黄威, 贲放, 吴珊, 孙思源, 廖桂香, 西永在. 正交多项式法在航空电磁运动噪声去除中的应用[J]. 物探与化探, 2019, 43(4): 892-898.
[7] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[8] 田郁, 胡祥云, 乐彪. 倾子在地球物理断裂构造解释中的应用[J]. 物探与化探, 2018, 42(6): 1237-1244.
[9] 仇根根, 吕琴音, 彭炎, 裴发根. 大地电磁三维模型二维反演计算数值模拟分析[J]. 物探与化探, 2018, 42(4): 791-797.
[10] 谭林, 周道卿, 宁墨奂, 秦溱. 频率域航空电磁法人机交互式二维正演研究[J]. 物探与化探, 2018, 42(4): 798-803.
[11] 相丽娜, 王志宏, 孙栋华, 伍显红, 魏永强. 航电在高山区找矿快速突破中的应用[J]. 物探与化探, 2018, 42(2): 225-233.
[12] 孙栋华, 李怀渊, 江民忠, 王培建. 利用时间域航空电磁资料再论华北地台北界的划分[J]. 物探与化探, 2017, 41(3): 478-483.
[13] 骆燕, 江民忠, 宁媛丽, 彭莉红, 朱琳. 不同类型低阻异常航电时间常数的特征分析[J]. 物探与化探, 2016, 40(5): 991-997.
[14] 田占峰, 毛星, 罗旭, 金胜, 叶高峰. 音频大地电磁测深法在电性结构研究中的应用——以郯庐断裂带宿迁段为例[J]. 物探与化探, 2016, 40(4): 732-736.
[15] 赵丛, 朱琳, 李怀渊, 江民忠, 骆燕, 张伟, 何昕欣. 航空和地面天然场电磁法联合开展深部矿产资源勘探[J]. 物探与化探, 2016, 40(2): 333-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com