Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (1): 1-16    DOI: 10.11720/wtyht.2019.1250
     特约稿件 本期目录 | 过刊浏览 | 高级检索 |
深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义
孙春岩1, 王栋琳1,2(), 张仕强1, 贺会策1,3, 赵浩1, 凌帆4,5, 尹文斌4
1. 中国地质大学(北京) 工程技术学院,北京 100083
2. 武警黄金第五支队,陕西 西安 710100
3. 中国地质调查局 广州海洋地质调查局,广东 广州 510075
4. 湖南继善高科技有限公司,湖南 长沙 410208
5. 中南大学 地球科学与信息物理学院,湖南 长沙 410083
Deep sea methane electrochemical in-situ long-term monitoring technology and its significance in the ocean environmental investigation and gas hydrate exploration
Chun-Yan SUN1, Dong-Lin WANG1,2(), Shi-Qiang ZHANG1, Hui-Ce HE1,3, Hao ZHAO1, Fan LING4,5, Wen-Bin YIN4
1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
2. No.5 Gold Geological Party of PAP, Xi’an 710100, China;
3. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075,China
4. Hunan Geo-sun High-Technology Co.,Ltd, Changsha 410208, China
5. School of Geosciences and Info-Physics of Central South University,Changsha 410083, China;
全文: PDF(7218 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

深海溶解甲烷浓度数据连续获取的方法技术,对于海洋环境和天然气水合物开发过程中甲烷扩散作用及通量的动态监测,具有重要的科学意义和实际应用价值。本文较详细地介绍了依据“海水脱气、气体样品定量输入、电化学高精度检测”技术思路,采用“增压排液整机系统控制的海水循环、减压稳流、气液分离、烃类组分高精度检测技术改进”方法,研发“深海甲烷电化学原位长期监测技术”的关键环节和技术方法。结合原位传感器在胶州湾港口为期94天底水长期监测实验获取的数据成果,对原位传感器的技术性能、数据质量、地质效果进行了研究评价。结果表明:① 原位传感器量程甲烷指标达到0.01~10 000 nmol/L,灵敏度达到0.01 nmol/L,对烃类组分检测具有较好的稳定性和选择性;② 监测水域溶解甲烷数值范围19.01~106.87 nmol/L,正常甲烷背景32.41 nmol/L,局部异常甲烷背景80.60 nmol/L,资料显示异常与污水排放过程对海水环境污染有关;③ 实测甲烷数据成果地球化学特征与胶州湾海域海水环境以往调查研究成果符合,证明了实测数据的客观性和科学性;④ 海试监测试验成果证明,原位传感器测试性能可靠、结构设计合理、设计思路科学,基本具备了海洋科学调查中对海水甲烷浓度数据获取的能力,在未来海洋天然气水合物开发过程中对甲烷扩散作用的动态监测及深海甲烷浓度通量的长期监测中,具有实际应用价值和科学意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙春岩
王栋琳
张仕强
贺会策
赵浩
凌帆
尹文斌
关键词 深海环境长期监测甲烷原位传感器海水甲烷浓度海洋天然气水合物胶州湾    
Abstract

The continuous acquisition of dissolved methane concentration data in the deep sea has important scientific significance and practical application value for dynamic monitoring of marine environment and methane diffusion in gas hydrates development. This paper introduces key technologies of electrochemical in-situ long-term monitoring technology for deep sea methane in detail, which include the technical ideas of "seawater degassing, quantitative injection of gas samples, and high-precision electrochemical detection", the technical method of "sea water circulation controlled by supercharged drainage system, decompressed steady flow, gas-liquid separation, and improvement of high precision detection technology for hydrocarbon components". Based on the long-term monitoring experiment data obtained from bottom water in Jiaozhou Bay during 94 days, the authors studied and evaluated the technical performance, data quality and geological effect of the in-situ sensors. Some conclusions have been reached: (1) In-situ sensor has an index range of 0.01~10 000 nmol/L and sensitivity reaches 0.01 nmol/L. It has good stability and selectivity for the detection of hydrocarbon components; (2) The range of dissolved methane in the monitoring area is 19.01~106.87 nmol/L, the normal methane background is 32.41 nmol/L, and the local anomalous methane background is 80.60 nmol/L. These data show that abnormality is related to sewage discharge and seawater pollution; (3) The results of measured methane data are consistent with those obtained from previous investigation and study of seawater environment in Jiaozhou Bay, which proves that the measured data are objective and scientific; (4) The sea trial monitoring results show that the in-situ sensor is reliable in testing, reasonable in structure design and scientific in design ideas, and it basically has the capability for acquiring seawater methane concentration data in marine scientific investigation. It has practical application value and scientific significance in the dynamic monitoring of methane diffusion and long-term monitoring of deep sea methane concentration during the development of marine gas hydrate in the future.

Key wordsdeep-sea environment    long-term monitoring    methane in-situ sensor    seawater methane concentration    marine gas hydrate    Jiaozhou Bay
收稿日期: 2018-06-25      出版日期: 2019-02-20
:  P618.13  
基金资助:国家自然科学基金资助项目(41276056);国家高技术研究发展计划“863”计划项目(2013AA09A411)
作者简介: 孙春岩(1952-),女,教授,博士生导师,长期从事石油天然气及海洋天然气水合物地球化学勘查技术方法的理论及应用技术的教学和科研工作。Email: suncy@cugb.edu.cn
引用本文:   
孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
Chun-Yan SUN, Dong-Lin WANG, Shi-Qiang ZHANG, Hui-Ce HE, Hao ZHAO, Fan LING, Wen-Bin YIN. Deep sea methane electrochemical in-situ long-term monitoring technology and its significance in the ocean environmental investigation and gas hydrate exploration. Geophysical and Geochemical Exploration, 2019, 43(1): 1-16.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1250      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I1/1
Fig.1  深海溶解甲烷原位高精度监测仪器工作原理框图
Fig.2  深海溶解甲烷原位长期监测仪器整体结构及主要组成器件
Fig.3  深海溶解甲烷原位长期监测仪器舱体内部安装布局和实物
a—侧视及俯视图;b—实物图;c—各器件布局
Fig.4  排液舱内部布局图(a)及实物图(b)
Fig.5  废液池外观(a)及内部(b)设计
液位情况 液室内探针长度/cm 液位高度/cm 液体容积/mL 内部气压/MPa
初始 0 0 0.101
接触T1 4.5 1.0 80 0.105
接触T2 4.0 1.5 146 0.109
接触T3 2.5 3.0 400 0.129
接触T4 1.0 4.5 714 0.168
液室充满 5.5 943 0.210
Table 1  废液池和液位探针参数设计
液位情况 探针间电平信号 系统工作情况
T1-T2 T1-T3 T1-T4
0~T1 不排液
达到T1及T1~T2间 不排液
达到T2及T2~T3间 启动排液,将液位排至T2以下
达到T3及T3~T4间 优先排液,将液位排至T3或T2以下
到达T4 强制排液,强制排液至T3或T2以下
Table 2  排液处理系统自动控制设计
Fig.6  增压排液泵结构设计
Fig.7  排液系统整体安装图
压力 /MPa 排量 /(mL·次-1) 电流 /A 功率 /W
0 6.8 0.62 14.88
7 6.1 0.71 17.04
10 5.6 0.75 18.00
15 5.0 0.81 19.44
20 4.5 0.84 20.16
Table 3  不同压力下排液泵的排量、电流、功率
Fig.8  排液泵的功率(左)、排量(右)随压力的变化规律
压力/MPa 温度/℃ 脱气前顶空CH4浓度/(μL·L-1) 脱气后顶空CH4浓度/(μL·L-1) 脱气效率/%
5 3~4 38.70 16.88 56.4
10 3~4 49.25 18.38 62.7
15 3~4 53.75 25.91 51.8
20 3~4 83.63 28.67 65.7
Table 4  进液流速为5 mL/min时脱气系统的脱气效率
柱材质 固定相 规格(长×直径) 载气流速 老化
PTFE 1.5%阿皮松+
Al2O3颗粒(60~80目)
1.5 m×φ3 mm 7~8 mL/min 马弗炉150℃
高温老化3~5 h
Table 5  优化色谱柱参数
Fig.9  色谱柱对甲、乙、丙烷的分离效果谱峰曲线
Fig.10  系统电源结构原理
Fig.11  系统集成控制原理
Fig.12  气态烃检测软件工作界面
样品编号 甲烷传感器测试浓度/(μL·L-1) 气相色谱仪测试浓度/(μL·L-1) 相对误差/%
甲烷 乙烷 丙烷 甲烷 乙烷 丙烷 甲烷 乙烷 丙烷
1 0.531 0.401 0.437 0.347 0.282 0.279 21.31 34.64 44.15
2 0.948 1.015 1.096 0.896 0.790 0.774 5.64 24.99 34.50
3 1.839 1.634 1.672 2.105 2.079 2.029 13.49 23.97 19.29
4 3.631 3.549 3.658 4.005 3.725 3.705 9.80 4.84 1.29
5 9.444 9.054 9.088 10.315 9.840 9.820 8.82 8.33 7.75
6 20.891 20.480 19.887 21.360 21.275 21.290 2.22 3.81 6.81
7 40.003 40.002 39.999 39.645 39.640 39.630 0.92 0.46 0.44
8 60.187 60.384 58.221 56.760 56.620 56.805 6.03 6.43 2.46
9 89.300 90.705 86.755 91.820 91.380 91.240 2.78 0.73 5.04
10 134.846 134.620 125.893 143.990 143.620 平峰 6.55 6.73
11 150.925 150.899 142.537 163.350 平峰 平峰 7.90
12 175.900 175.100 164.300 196.050 平峰 平峰 10.83
13 181.200 146.000 21.51
14 214.200 174.640 20.35
15 308.000 251.240 22.71
16 300.700 260.600 14.29
17 453.200 371.820 19.73
18 463.700 380.000 19.84
19 539.300 463.100 15.20
20 738.300 585.300 23.12
21 1340.000 1130.300 16.98
22 3722.000 3262.400 13.16
23 6584.000 4932.500 28.68
Table 6  传感器和气相色谱平行实验数据比对
样品
编号
第1次测定
值/(μL·L-1)
第2次测定
值/(μL·L-1)
两次测试结果/(μL·L-1) 重复性限r
(r=0.2978m0.9145)
是否
合格
平均值m 绝对差值
1 0.117 0.144 0.131 0.027 0.046 合格
2 0.224 0.322 0.273 0.098 0.091 合格
3 0.429 0.445 0.437 0.016 0.140 合格
4 0.982 0.914 0.948 0.068 0.284 合格
5 1.743 1.934 1.839 0.191 0.520 合格
6 3.763 3.499 3.631 0.264 0.968 合格
7 9.969 8.919 9.444 1.050 2.321 合格
8 39.743 40.263 40.003 0.520 8.690 合格
9 88.590 90.010 89.300 1.420 18.112 合格
10 151.750 150.100 150.925 1.650 29.269 合格
11 174.800 177.000 175.900 2.200 33.668 合格
12 510.000 509.600 509.800 0.400 89.090 合格
13 784.600 776.200 780.400 8.400 131.510 合格
14 1051.000 996.700 1023.900 54.300 168.570 合格
15 1234.000 1260.000 1247.000 26.000 201.880 合格
16 1401.000 1410.000 1405.500 9.000 225.220 合格
17 1594.000 1659.000 1626.500 65.000 257.400 合格
18 1894.000 1807.000 1850.500 87.000 289.640 合格
19 2190.000 2007.000 2098.500 183.000 324.950 合格
20 2180.000 2202.000 2191.000 22.000 338.020 合格
Table 7  传感器重复性检测数据
Fig.13  原位甲烷传感器与气相色谱仪测试数据对比
Fig.14  青岛胶州湾中苑码头海上原位传感器实验状况
a—岸上监控平台;b—仪器下水布放
Fig.15  监测点传感器测试海水溶解甲烷浓度数据分布(直线段为剔除故障数据段)
Fig.16  监测点传感器测试海水溶解甲烷浓度日均值分布
Fig.17  监测点传感器测试与实验室检测监测样海水溶解甲烷浓度对比
Fig.18  监测点传感器测试日均值与同时间监测样实验室检测海水溶解甲烷浓度对比
本次海试数据 测试时间 2017年8月~11月
8/8~8/15 9/1~9/11 9/18~10/31 9/12~9/17 11/1~11/9
天数/天 8 11 44 6 9
均值/(nmol·L-1) 31.84 34.66 30.73 82.35 79.44
数据分布状态 中低数值 局部异常
实测甲烷数据范围及均值(nmol·L-1) 19.01~57.73(均值32.41) 50.62~106.87(均值80.60)
监测点甲烷浓度均值/(nmol·L-1) 30.32(最大值35.11) 73.83(仅一个数据)
文献数据 测试时间 8月~11月
2008年1月 2014年4月 2008年4月 2008年7月 2006年8月 2008年11月
甲烷浓度范围/(nmol·L-1) 6.30~203.29 7.00~21.90 6.86~702.49 30.73~1175.00 11.32~23.81 6.85~327.44
数据来源 杨晶[34] 赵慧敏[31] 杨晶[34] 杨晶[34] 李佩佩、张桂玲[35] 杨晶[34]
Table 8  海试溶解甲烷浓度测试数据和胶州湾海域海水甲烷浓度分布状态
[1] 喻西崇, 李清平, 安维杰 .海底沉积物中天然气水合物生成和分解规律研究进展[J].中国海上油气, 2006, 18(1):61-67.
doi: 10.3969/j.issn.1673-1506.2006.01.014
[1] Yu X C, Li Q P, An W J . Some advances in studying formation and dissociation of gas hydrate in submarine sediments[J]. China Offshore and Gas , 2006,18(1):61-67.
[2] 于晓果, 金翔龙 . 天然气水合物分解与全球变暖[J]. 第四纪研究, 2001,21(6):568.
doi: 10.3321/j.issn:1001-7410.2001.06.015
[2] Yu X G, Jin X L . Gas hydrate decomposition and global warming[J]. Quaternary Sciences, 2001,21(6):568.
[3] Sloan E D . Clathrate hydrates of natural gases(2ed.)[M]. New York:Marcel Dekker Inc, 1998.
[4] 金庆焕 . 天然气水合物资源概论[M]. 北京: 科学出版社, 2006.
[4] Jin Q H. Overview of gas hydrate resources[M]. Beijing: Science Press, 2006.
[5] 孙春岩, 赵浩, 贺会策 , 等 .海洋底水原位探测技术与中国南海天然气水合物勘探[J].地学前缘, 2017, 24(6):225-241.
doi: 10.13745/j.esf.yx.2016-12-2
[5] Sun C Y, Zhao H, He H C , et al. In-situ detection of ocean floor seawater and gas hydrate exploration of the South China Sea[J]. Earth Science Frontiers , 2017,24(6) : 225-241.
[6] Garcia M L, Masson M . Environmental and geologic application of solid-state methane sensors [J]. Environmental Geology, 2004, 46(1059):1063-.
doi: 10.1007/s00254-004-1093-1
[7] Isern A R . National science foundation’s ocean observatory initiative [J].Sealing Technology, 2005,46(6) : 55-60.
[8] 杨涛, 蒋少涌, 葛璐 , 等. 南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 中国科学:地球科学, 2013, 43(3): 329-338.
doi: 10.1360/zd-2013-43-3-329
[8] Yang T, Jiang S Y, Ge L , et al .Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration[J]. Science China: Earth Sciences , 2013,43(3):329-338.
[9] Kastner M, Claypool G, Robertson G . Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon,northern Gulf of Mexico[J].Marine and Petroleum Geology 2008,25(9):860-872.
doi: 10.1016/j.marpetgeo.2008.01.022
[10] 陈勇, 袁东星, 李权龙 , 等 .常温吹扫捕集—气相色谱法测定海水中氧化亚氮[J].分析化学, 2007, 35(897):900-.
doi: 10.3321/j.issn:0253-3820.2007.06.027
[10] Chen Y, Yuan D X, Li Q L , et al. Determination of nitrous oxide in seawater by room temperature purge and trap-gas chromatography[J]. Chinese Journal of Analytical Chemistry, 2007,35(6):897-900.
[11] 黄永样, Suess E, 吴能友, 等. 南海北部陆坡甲烷和天然气水合物地质:中德合作SO-177航次成果专报[M]. 北京: 地质出版社, 2008.
[11] Huang Y Y, Suess E, Wu N Y, et al. Methane and gas hydrate geology of the northern South China Sea:Sino-german cooperative SO-177 cruise report[M]. Beijing: Geological Publishing House, 2008.
[12] Boulart C, Connelly D P, Mowlem M C . Sensors and technologies for in-situ dissolved methane measurements and their evaluation using Technology Readiness Levels[J]. Trac Trends in Analytical Chemistry,2010,29(2):186-195 .
doi: 10.1016/j.trac.2009.12.001
[13] 尹希杰, 周怀阳, 杨群慧 , 等 南海北部甲烷渗漏活动存在的证据:近底层海水甲烷高浓度异常[J].海洋学报:中文版, 2008, 30(6):69-75.
doi: 10.3321/j.issn:0253-4193.2008.06.008
[13] Yin X J, Zhou H Y, Yang, Q H , et al. The evidence for the existence of methane seepages in the northern South China Sea: Abnormal high methane concentration in bottom waters[J]. Acta Oceanologica Sinica, 2008 , 30(6):69-75.
[14] 周怀阳, 吴自军, 彭晓彤 , 等 .大西洋洋中脊Logatchev热液场水柱中甲烷羽状流的探测[J].科学通报, 2007, 52(9):1058-1063.
doi: 10.3321/j.issn:0023-074X.2007.09.012
[14] Zhou H Y, Wu Z J, Peng X T , et al. Detection of methane plumes in the hydrothermal field water column of logatchev in the mid-atlantic ridge[J]. Chinese Science Bulletin, 2007 , 52(9):1058-1063.
[15] 邸鹏飞, 冯东, 高立宝 , 等 .海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J].地球物理学进展, 2008, 23(5):1592-1602.
doi:
[15] Di P F, Feng D, Gao L B , et al. In-situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008,23(5):1592-1602.
[16] 邸鹏飞, 陈庆华, 陈多福 . 海底冷泉渗漏气体流量原位在线测量技术研究[J]. 热带海洋学报, 2012, 31(5):83-87.
doi: 10.3969/j.issn.1009-5470.2012.05.012
[16] Di P F, Chen Q H, Chen D F . In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study[J]. Journal of Tropical Oceanography, 2012,31(5):83-87.
[17] 王庆光, 徐瑞松, 王洁 , 等 .南海北部油气化探研究——以甲烷浓度为例[J].海洋科学, 2010, 34(6):9-15.
[17] Wang Q G, Xu R S, Wang J , et al. Oil and gas geochemical exploration in the northern South China Sea:A case study of methane concentration[J]. Marine Sciences, 2010,34(6):9-15.
[18] 于新生, 李丽娜, 胡亚丽 , 等 .海洋中溶解甲烷的原位检测技术研究进展[J].地球科学进展, 2011, 26(10):1030-1037.
doi: 10.11867/j.issn.1001-8166.2011.10.1030
[18] Yu X S, Li L N, Hu Y L , et al. The development of in-situ sensors for dissolved methane measurement in the Sea[J]. Advances in Earth Science, 2011,26(10) : 1 030-1037.
[19] Kroger S, LAW R J . Sensing the sea[J]. Trends in biotechnology,2005,23(5): 250-256.
doi: 10.1016/j.tibtech.2005.03.004
[20] Varney M S. Chemical sensors in oceanography[M]. Boca Raton: CRC Press, 2000.
[21] 申正伟, 孙春岩, 贺会策 , 等. 深海原位溶解甲烷传感器(METS) 的原理及应用研究[J].海洋技术学报, 2015, 34(5):19-25.
[21] Shen Z W, Sun C Y, He H C , et al. The principle and applied research of in-situ METS for dissolved methane measurement in deep sea[J]. Journal of Ocean Technology, 2015,34(5):19-25.
[22] 王维熙, 孙春岩, 杨慧 , 等 .海洋油气勘探中高灵敏度气态烃现场探测系统的研制[J].地球科学, 2004, 29(2):163-168.
doi: 10.3321/j.issn:1000-2383.2004.02.007
[22] Wang W X, Sun C Y, Yang H , et al. Investigation to on-site detection system for gaseous hydrocarbon with high sensitivity be used to explore gas and oil in sea[J]. Earth Science:Journal of China University of Geosciences, 2004,29(2):163-168.
[23] 魏小芳, 罗一菁, 刘可禹 , 等 .油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展[J].地球科学进展, 2011, 26(5):499-506.
doi: 10.11867/j.issn.1001-8166.2011.05.0499
[23] Wei X F, Luo Y J, Liu K Y , et al. Research progress on the mechanism and potential application of CH4 bioconversion form CO2 in oil and gas reservoirs[J]. Advances in Earth Science, 2011,26(5):499-506.
[24] 臧家业, 王相芹 .海湾地区海水中的溶存甲烷浓度、分布特征及成因[J].黄渤海海洋, 1997, 15(1):20-29.
[24] Zang J Y, Wang X Q . The dissolved methane in seawater of estuaries,distribution features and formation[J]. Journal of Oceanography of Huanghai and Bohai Seas, 1997,15(1):20-29.
[25] 孙春岩, 张志冰, 庞云天 , 等. 一种海水中甲烷浓度原位探测系统[P].中国专利:201110196474. 4, 2013.
[25] Sun C Y, Zhang Z B, Pang Y T , et al. In-situ detecting system of methane (CH4) concentration in seawater[P].China Patent: 201110196474. 4, 2013.
[26] 竺玮煌 . 天然气水合物海水中甲烷原位富集和高精度探测系统的研制[D].北京:中国地质大学( 北京), 2011.
[26] Zhu W H . The research on CH4 in sea water for sample in-situ collecting and extra accurate detecting system of marine gas hydrates[D].Beijing: China University of Geosciences( Beijing), 2011.
[27] 张志冰 . 海水中甲烷浓度原位地球化学探测系统的研发与应用[D].北京:中国地质大学( 北京), 2013.
[27] Zhang Z B . Development and application on in-situ geochemical detection technology of methane concentration in seawater[D].Beijing: China University of Geosciences( Beijing), 2013.
[28] 李东梁 . 海洋探测仪器承压舱的设计[J]. 机械研究与应用, 2013, 26(5):126-128.
doi: 10.3969/j.issn.1007-4414.2013.05.045
[28] Li D L . Design of the exploration instrument cabin used in ocean[J]. Mechanical Research and Application, 2013,26(5):126-128.
[29] 中华人民共和国国家质量监督检验检疫总局. JJG 700-2016 气相色谱仪检定规程[S].北京: 中国标准出版社, 2016.
[29] AQSIQ. JJG 700-2016 Verification regulation of gas chromatogaphs[S]. Beijing: China Standard Press , 2016.
[30] 中华人民共和国国家质量监督检验检疫总局. GB/T 29173-2012 油气地球化学勘探试样测定方法[S]. 北京: 中国标准出版社, 2013.
[30] AQSIQ. GB/T 29173-2012 Determination method for samples of geochemical exploration for oil and gas[S]. Beijing : China Standard Press, 2013.
[31] 赵慧敏, 丁海兵, 吕丽娜 , 等 .胶州湾海水甲烷氧化速率的水平与垂直变化初步研究[J].中国海洋大学学报:自然科学版, 2016, 46 (6):90-99.
doi: 10.16441/j.cnki.hdxb.20150056
[31] Zhao H M, Ding H B, Luy L N , et al. The preliminary study of horizontal and vertical variations of methane oxidation rates in the Jiaozhou Bay[J]. Periodical of Ocean University of China, 2016,46(6):90-99.
[32] 曹兴朋, 张桂玲, 马啸 , 等 .春季东、黄海溶解甲烷的分布和海气交换通量[J].环境科学, 2013, 34(7):2565-2573.
[32] Cao X P, Zhang G L, Ma X , et al. Distribution and air-sea fluxes of methane in the Yellow Sea and the East China Sea in the spring[J]. Environmental Science, 2013,34(7):2565-2573.
[33] 张桂玲 . 中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究[D]. 青岛:中国海洋大学, 2004.
[33] Zhang G L . Studies on biogeochemistry of dissolved methane and nitrous oxide in the coastal waters of China[D]. Qingdao: Ocean University of China, 2004.
[34] 杨晶 . 胶州湾水体及沉积物中甲烷和氧化亚氮的生物地球化学研究[D]. 青岛:中国海洋大学, 2009.
[34] Yang J . Biogeochemistry of methane and nitrous oxide in the water and sediments of Jiaozhou Bay[D]. Qingdao: Ocean University of China, 2009.
[35] 李佩佩, 张桂玲, 赵静 , 等 .胶州湾及周边海域大气和海水中N2O和CH4的分布及海气交换通量[J].中国海洋大学学报:自然科学版, 2009, 39(4):805-814 .
[35] Li P P, Zhang G L, Zhao J , et al. The distributions and atmospheric fluxes of nitrous oxide and methane in Jiaozhou Bay and its adjacent coastal area[J]. Periodical of Ocean University of China, 2009,39(4):805-814.
[1] 孙春岩, 宋腾, 贺会策, 张志冰, 李攀峰, 赵浩, 李吉鹏. 智控型化探样品预处理系统及其在海洋天然气水合物勘查中的应用[J]. 物探与化探, 2015, 39(5): 954-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com