Please wait a minute...
E-mail Alert Rss
 
物探与化探  2018, Vol. 42 Issue (5): 1026-1032    DOI: 10.11720/wtyht.2018.0073
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用
王波, 夏同星, 明君, 郭帅
中海石油(中国)有限公司天津分公司 渤海石油研究院,天津 塘沽 300459
Peak energy sum in hydrocarbon sensitive frequency range and its application to the Bohai Oilfield
Bo WANG, Tong-Xing XIA, Jun MING, Shuai GUO
Bohai Oilfield Research Institute,Tianjin Branch of CNOOC Ltd.,Tianjin 300459,China
全文: PDF(7564 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

由于地层原油和地层水的物理性质差异小,砂泥岩物性变化影响地震反射,地震资料存在噪声等多种因素的影响,利用地震资料识别含油砂体困难大,多解性强,成功应用案例少。虽然单个含油砂体产生的地震差异小,但是油气通常在地下某一空间范围内富集,多个油气层产生的地震响应的差异总和可以被明显观测到。笔者提出了油气敏感频率段极值能量和因子进行油气检测,首先利用可变因子广义S变换进行地震资料分频处理,然后分析能够突出油水性质差异的地震频率范围并确定能量阈值,计算油气敏感频率段极值能量。对于高丰度含油气区,纵向上发育多套油气层,通过纵向上极值能量进行累加可以进一步突出油气信息,因此,极值能量和油气检测因子可有效预测高丰度油气分布区。模型数据测试证明了本文方法是有效的,将本文方法应用于渤海多个油田,油气检测的结果与钻井获得的油气分布范围吻合良好。该方法指导了多口井的成功钻探,获得了良好的应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王波
夏同星
明君
郭帅
关键词 地震油气检测油气指示因子可变因子广义S变换极值能量和敏感频率分析高丰度含油气区渤海油田    
Abstract

Since the difference of physical properties between formation oil and formation water is small,the physical properties change of sand and mudstone affects seismic reflection,and there exists noise of seismic data,it is very difficult to identify oil-bearing sand bodies using seismic data in that it has strong multiple solutions,and hence the successful application cases are very few.Although it is difficult for single hydrocarbon-bearing sands to generate observable difference,hydrocarbon is accumulated in underground space,and seismic data response from multi-hydrocarbon zone could be identified easily.In this paper,the authors propose peak energy sum hydrocarbon detection method.The method first utilizes the variable factor generalized S transform to achieve frequency division,and then analyzes seismic frequency range which highlights the difference between oil and water and determines energy threshold;on such a basis,the peak energy of the hydrocarbon sensitive frequency section is calculated.For high abundance oil-bearing areas,many sets of hydrocarbon reservoirs are developed longitudinally,and hydrocarbon information can be further highlighted by accumulation of peak energy in the longitudinal direction.Therefore,the peak energy sum hydrocarbon detection factor can effectively predict the high abundance of hydrocarbon distribution.The model data test proves that this method is effective.This method was applied in several oilfields in Bohai,and the results of hydrocarbon detection are in good agreement with the hydrocarbon distribution areas obtained by drilling.This method has guided many successful drilling wells and obtained good effects.

Key wordsseismic hydrocarbon detection    hydrocarbon indicator    variable factor generalized S transform    peak energy sum    sensitive frequency analysis    high abundance hydrocarbon area    Bohai oilfield
收稿日期: 2018-02-22      出版日期: 2018-10-24
:  P631.4  
基金资助:国家科技重大专项(2016ZX05058)
作者简介: 王波(1986-),男,硕士研究生,研究方向为地震储层预测与油气检测。Email:wangbo25@cnooc.com.cn
引用本文:   
王波, 夏同星, 明君, 郭帅. 油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用[J]. 物探与化探, 2018, 42(5): 1026-1032.
Bo WANG, Tong-Xing XIA, Jun MING, Shuai GUO. Peak energy sum in hydrocarbon sensitive frequency range and its application to the Bohai Oilfield. Geophysical and Geochemical Exploration, 2018, 42(5): 1026-1032.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2018.0073      或      https://www.wutanyuhuatan.com/CN/Y2018/V42/I5/1026
  基于渤海某油田地质特征建立的油藏模型及极值能量和油气检测结果
a—油藏模型;b—合成地震记录;c—极值能量和属性
岩性 纵波速度/(m/s) 密度/(kg/m3)
泥岩 2700 2300
含水砂岩 2600 2200
含油砂岩 2550 2150
含气砂岩 2400 1900
  图1a的模型参数
  A油田油气层段过井地震剖面
  A油田明下段油层和水层不同频率瞬时振幅统计
  A油田明下段极值能量和油气检测剖面
  A油田明下段油气敏感频率段的振幅绝对值累加属性剖面
  A油田过A1和A2井常规高频衰减油气检测结果
  B油田油气层段过井地震剖面
  B油田极值能量和油气检测剖面
[1] Ostrander W J. Plane wave reflection coefficients for gas sands at nonnormal angles of incidence [C]//Expanded Abstracts of the 52 nd Annual SEG Meeting,Society of Exploration Geophysicists , 1982.
[2] Rutherford S R, Williams R H . Amplitude-versus-offset in gas sands[J]. Geophysics, 1989,54:680-688.
doi: 10.1190/1.1442696
[3] Castagna J P, Swan H W, Foster D J . Framework for AVO gradient and intercept interpretation[J]. Geophysicists, 1998,63:948-956.
doi: 10.1190/1.1444406
[4] Shuey R . A simplification of the Zoeppritz equations[J]. Geophysics, 1985,50(4):609-614.
doi: 10.1190/1.1441936
[5] Quakenbush M, Shang B, Tuttle C . Poisson impedance[J]. The Leading Edge, 2006,25(2):128-138.
doi: 10.1190/1.2172301
[6] 解吉高, 刘志斌, 张益明 , 等. 利用泊松阻抗进行油气检测[J]. 石油地球物理勘探, 2013,48(2):276-278.
[7] Goodway B, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters; “λρ”,“μρ” & “λμ fluid stack”,from P and S inversions [C]//Expanded Abstracts of the 67 th Annual SEG Meeting,Society of Exploration Geophysicists , 1997.
[8] 郝亚炬, 黄捍东, 文晓涛 , 等. 广义S域Q值估计方法及其在油气检测中的应用[J]. 石油地球物理勘探, 2017,52(5):1059-1066.
[9] Taner M T, Koehler F, Sheriff R E . Complex seismic trace analysis[J]. Geophysics, 1979,44(6):1041-1063.
doi: 10.1190/1.1440994
[10] Dilay A, Eastwood J . Spectral analysis applied to seismic monitoring of thermal recovery[J]. The Leading Edge, 1995,14(11):1117-1122.
doi: 10.1190/1.1437081
[11] Mitchell J T, Derzhi N, Lichman E. Energy absorption analysis: A case study [C]//Expanded Abstracts of the 66 th Annual SEG Meeting,Society of Exploration Geophysicists , 1996: 1785-1788.
[12] Castagna J P, Sun S, Siegfried R W . Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003,22(2):120-127.
doi: 10.1190/1.1559038
[13] Wilson A, Mark C, Li X Y. Frequency-dependent AVO inversion [C]//Expanded Abstracts of the 79 th Annual SEG Meeting,Society of Exploration Geophysicists , 2009.
[14] 王波, 夏同星, 谭辉煌 . 基于斑块饱和模型井控属性融合法油气检测[J]. 石油物探, 2017,56(2):288-294.
[15] 凌云, 杜向东, 曹思远 . FAVO反演技术及其在深水砂岩储层中的应用[J]. 物探与化探, 2018,42(1):161-165.
[16] Stockwell R G, Mansinha L, Lowe R P . Localization of the complex spectrum:the S transform[J]. IEEE Transactions on Signal Processing, 1996,44(4):998-1001.
doi: 10.1109/78.492555
[17] Mansinha L, Stockwell R G . Local S-spectrum analysis of 1-D and 2-D data[J]. Physics of the Earth and Plantetary Interiors, 1997,103(3):329-336.
doi: 10.1016/S0031-9201(97)00047-2
[18] Pinnegar C R, Mansinha L . The S transform with windows of arbitrary and varying shape[J]. Geophysics, 2003,68(1):381-385.
doi: 10.1190/1.1543223
[19] Pinnegar C R, Mansinha L . Time-local spectral analysis for non-stationary time series:the S-transform for noisy signals[J]. Fluctuation and Noise Letters, 2003,3(3):357-364.
doi: 10.1142/S0219477503001439
[20] 周竹生, 陈友良 . 含可变因子的广义S变换及其时频滤波[J]. 煤田地质与勘探, 2011,39(6):63-66.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com