Please wait a minute...
E-mail Alert Rss
 
物探与化探  2018, Vol. 42 Issue (4): 653-661    DOI: 10.11720/wtyht.2018.1504
     综述 本期目录 | 过刊浏览 | 高级检索 |
城市浅层地震勘探技术进展
李万伦, 田黔宁, 刘素芳, 吕鹏, 姜重昕, 贾凌霄
中国地质调查局 地学文献中心,北京 100083
Progress in the study of shallow seismic exploration technology in urban areas
Wan-Lun LI, Qian-Ning TIAN, Su-Fang LIU, Peng LYU, Chong-Xin JIANG, Ling-Xiao JIA
Geological Documentation Center,China Geological Survey,Beijing 100083,China
全文: PDF(5754 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

当前快速城市化与城市地下空间开发给浅层地震勘探技术的发展带来了挑战和良好机遇。笔者从地震勘探仪器设备、数据采集、数据处理和解释应用等方面介绍了近年来城市浅层地震勘探技术所取得的主要进展,包括陆上地震拖缆系统的研发、无线地震数据采集、可控震源伪随机扫描方法、城市噪声面波勘探技术及地震数据综合处理算法等。结果认为,通过瑞雷波约束折射P波层析成像结果或联合反演方法,可以提高后者对城市地下“百米”空间的探测精度;利用城市噪声作为震源,既能获得对描述浅层地质特征有重要意义的补充信息,同时又满足了城市对绿色、环保震源的要求;而陆上地震拖缆系统则使得S波技术在城市地下浅层勘探中可以发挥更加重要的作用。今后发展建议:一是加强城市浅层地震数据采集关键技术装备的研发;二是进一步开发和完善非传统(如面波)地震勘探方法,深入挖掘地震波中所蕴含的大量有用信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李万伦
田黔宁
刘素芳
吕鹏
姜重昕
贾凌霄
关键词 城市环境陆上地震拖缆无线检波器伪随机扫描面波勘探非传统地震勘探    
Abstract

The current rapid urbanization and underground development have brought challenges and good opportunities for the development of shallow seismic exploration technology.In this paper,the main advances made in shallow seismic exploration in cities in recent years have been introduced in terms of seismic exploration equipment,data acquisition,data processing,interpretation and their applications,which include the development of seismic land-streamer systems,wireless seismic data acquisition,vibroseis pseudo-random sweeps method,urban noise surface wave exploration technology and comprehensive data processing algorithms.Some conclusions have been reached:the Rayleigh wave constrained refraction P-wave tomography results or the joint inversion method can improve the accuracy of detection of urban underground "100-meter" space;using urban noise as a source,it can not only provide supplementary information that is important for the description of shallow geological features,but also meets the city's requirements for green and environmental protection;through the seismic land-streamer system,S-wave technology can play a more important role in urban shallow exploration.Some proposals for future development are put forward:First,to strengthen the research and development of key technologies and equipment for shallow seismic data acquisition in urban area;Second,to further develop and improve non-traditional (such as surface wave) seismic exploration methods,and to dig deeply into a large amount of useful information contained in seismic waves.

Key wordsurban environment    seismic land-streamers    wireless detectors    pseudo-random sweeps    surface wave exploration    non-traditional seismic exploration
收稿日期: 2017-12-09      出版日期: 2018-08-03
:  P631.4  
基金资助:中国地质调查“地学情报综合研究与产品研发”项目(DD20160354);中国地质调查“地学情报综合研究与产品研发”项目(121201015000172602)
作者简介: 李万伦(1972-),男,汉族,博士,研究员,从事地学情报跟踪与分析工作
引用本文:   
李万伦, 田黔宁, 刘素芳, 吕鹏, 姜重昕, 贾凌霄. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018, 42(4): 653-661.
Wan-Lun LI, Qian-Ning TIAN, Su-Fang LIU, Peng LYU, Chong-Xin JIANG, Ling-Xiao JIA. Progress in the study of shallow seismic exploration technology in urban areas. Geophysical and Geochemical Exploration, 2018, 42(4): 653-661.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2018.1504      或      https://www.wutanyuhuatan.com/CN/Y2018/V42/I4/653
  陆上地震拖缆野外作业照片[19]
a—安装在拖缆上面的检波器;b—城市调查现场和地面条件的实例1;c—城市调查现场和地面条件的实例2; d—单分量无线检波器与三分量拖缆单元(可获取更长的偏移距,并克服某些复杂的城市环境问题,如道路交叉)
  沿着某条河流(右上框中的河道123)的地震叠加剖面示意[9]
a—采用标准的、未经约束的P波折射速度模型;b—采用新的有约束的P波折射速度模型。可以看出,在椭圆形中的薄层的侧向连续性增强,同时红色箭头所指示的“周期跳跃”现象问题也能消除
  在6个勘探点的S波速度剖面[38]
注:BF仅上部15 m的S波速度变化与其他5个地点一致,但再往下则无变化,推测可能系填充物所致;PH、CV两处为基岩,在20 m深时S波最大速度可达285 m/s
  关东地区群马县(Gunma)300个单分量(1C)检波器获取的环境噪声数据反演地下S波速度信息[16]
a—由12个小时的面波频散曲线反演得出的S波速度;b—只用1个小时的交通噪声数据反演得出的S波速度;c—每小时S波速度的差异对比
  渥太华市长达1 183 m的S波速度剖面示意[5]
a—根据地形起伏情况进行处理后的时间剖面;b—层速度函数(用等高线表示)(黑点代表平均速度与时间对)
  德国Gillenfeld偏移深度剖面的格栅图[6]
注:主剖面呈南北向,另有两条剖面与之相交
[1] 汪民 . 在中国地质矿产经济学会2016年工作会议上的讲话[J]. 中国国土资源经济, 2017,30(1):4-10.
doi: 10.3969/j.issn.1672-6995.2017.01.003
[2] 胡祥云, 杨迪坤, 刘少华 , 等. 环境与工程地球物理的发展趋势[J]. 地球物理学进展, 2006,21(2):598-6041.
doi: 10.3969/j.issn.1004-2903.2006.02.041
[3] 李学军, 窦硕娥, 曲海涛 . 城市工程地球物理探测技术应用与发展趋势[J]. 工程地球物理学报, 2008,5(5):564-563.
doi: 10.3969/j.issn.1672-7940.2008.05.013
[4] 李学军 . 我国城市物探工作的应用与发展[J]. 地球物理学进展, 2011,26(6):2221-2231.
[5] Pugin A J M, Pullan S, Hunter J A . Shear-wave high-resolution seismic reflection in Ottawa and Quebec City,Canada[J]. The Leading Edge, 2013,32(3):250-255.
doi: 10.1190/tle32030250.1
[6] Krawczyk C, Polom U, Beilecke T . Shear-wave reflection seismics as a valuable tool for near-surface urban applications[J]. The Leading Edge, 2013,32(3):256-263.
doi: 10.1190/tle32030256.1
[7] Liberty L . Seismic reflection imaging of a geothermal aquifer in an urban setting[J]. Geophysics, 1998,63(4):1285-1294.
doi: 10.1190/1.1444430
[8] Martinez K, Mendoza J A . Urban seismic site investigations for a new metro in central Copenhagen:Near-surface imaging using reflection,refraction and VSP methods[J]. Physics and Chemistry of the Earth, 2012,36:1228-1236.
[9] Duret F, Bertin F, Garceran K , et al. Near-surface velocity modeling using a combined inversion of surface and refracted P-waves[J]. The Leading Edge, 2016,35(11):946-951.
doi: 10.1190/tle35110946.1
[10] Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics[J].Geophysics, 2009, 74(6):WCC1-WCC26.
[11] 王杰, 胡光辉, 刘定进 , 等. 陆上地震资料全波形反演策略研究[J]. 石油物探, 2017,56(1):81-88.
[12] 夏江海, 高玲利, 潘雨迪 , 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015,58(8):2591-2605.
[13] Colombo S D, McNeice G, Rovetta D , et al. High-resolution velocity modeling by seismic-airborne TEM joint inversion:A new perspective for near-surface characterization[J]. The Leading Edge, 2016,35(11):977-985.
doi: 10.1190/tle35110977.1
[14] Bansal R, Gaiser J . An introduction to this special section:Applications and challenges in shear-wave exploration[J]. The Leading Edge, 2013,32(1):12.
doi: 10.1190/tle32010012.1
[15] Hunter J A, Burns R A, Good R L , et al. Near-surface geophysical techniques for geohazards investigations: Some Canadian examples[J]. The Leading Edge, 2010,29(8):964-977.
doi: 10.1190/1.3480011
[16] Nakata N . Near-surface S-wave velocities estimated from traffic-induced Love waves using seismic interferometry with double beamforming[J].Interpretation, 2016, 4(4):SQ23-SQ31.
[17] R.J. 科斯特奈斯克,B.B.西格彭.陆上地震拖缆[J]. 石油地球物理勘探, 1976,11(s1):16.
[18] Inazaki T.Ultra-shallow seismic reflection imaging using a towed Land Streamer tool[C]//Abstracts of the Japan Geoscience Union Meeting, 2006, U051/U051-025.
[19] Malehmir A, Dehghannejad M, Juhlin C, et al. A state-of-the-art MEMs-based 3C Seismic Landstreamer for Various Near-surface Applications [C]//Vienna,Austria:78 th EAGE Conference & Exhibition 2016 — Workshop Programme , 2016.
[20] Pugin A J M, Larson T H, Sargent S L , et al. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois,U.S.[J]. The Leading Edge, 2004,23(7):677-682.
doi: 10.1190/1.1776740
[21] Pugin A J M, Pullan S E, Hunter J A . Multicomponent high-resolution seismic reflection profling[J]. The Leading Edge, 2009,28(10):1248-1261.
doi: 10.1190/1.3249782
[22] Brodic B, Malehmir A, Juhlin C , et al. Multicomponent broadband digital-based seismic landstreamer for near-surface applications[J]. J. Appl. Geophys., 2015,123:227-241.
doi: 10.1016/j.jappgeo.2015.10.009
[23] 吴安楚 . 无线单点检波器高密度地震采集[J]. 勘探地球物理, 2009,32(1):101-106.
[24] Dean T . The use of pseudo-random sweeps for vibroseis surveys[J]. Geophys. Prospect, 2014,62:50-74.
doi: 10.1111/1365-2478.12074
[25] Cunningham A B . Some alternative vibrator signals[J]. Geophysics, 1979,44(12):1901-1921.
doi: 10.1190/1.1440947
[26] Strong S R . Numerical modelling of pseudo-random seismic sources[D]. Honors:University of Queensland, 2003.
[27] Scholtz P . Pseudo-random sweeps for built-up area seismic surveys[J]. The Leading Edge, 2013,32(3):276-281.
doi: 10.1190/tle32030276.1
[28] Baraniuk R G , Steeghs P.Compressive sensing:A new approach to seismic data acquisition[J].The Leading Edge, 2017, 36(82):642 645 .
doi: 10.1190/tle36080642.1
[29] Høyer A S, Lykke-Andersen H, Jørgensen F , et al. Combined interpretation of SkyTEM and high-resolution seismic data[J]. Physics and Chemistry of the Earth, 2011,36:1386-1397.
doi: 10.1016/j.pce.2011.01.001
[30] Colombo D , McNeice G,Rovetta D,et al.High-resolution velocity modeling by seismic-airborne TEM joint inversion:A new perspective for near-surface characterization[J]. The Leading Edge, 2016,35(11):977-985.
doi: 10.1190/tle35110977.1
[31] Colombo D, Miorelli F, Sandoval-Curiel E , et al. pQC:A novel approach for robust automatic near-surface analysis in low-relief geology[J]. The Leading Edge, 2016,35(11):952-960.
doi: 10.1190/tle35110952.1
[32] Amaru M, Hoelting C, Ivanova N , et al. Introduction to this special section:Velocity-model uncertainty[J]. The Leading Edge, 2017,36(2):126.
doi: 10.1190/tle36020126.1
[33] 王伟君, 刘澜波, 陈棋福 , 等. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 2009,52(6):1515-1525.
[34] Okada H . The microtremor survey method[C]//SEG,Monograph Series 12, 2003.
[35] Pancha A, Anderson J G, Louie J N , et al. Measurement of shallow shear wave velocities at a rock site using the ReMi technique[J]. Soil Dynamics and Earthquake Engineering, 2008,28:522-535.
doi: 10.1016/j.soildyn.2007.08.005
[36] Gamal M A, Pullammanappallil S . Validity of the refraction microtremor (ReMi) method for determining shear wave velocities for different soil types in Egypt[J]. International Journal of Geosciences, 2011,2(4):530-540.
doi: 10.4236/ijg.2011.24056
[37] Ivanov J, Leitner B, Shefchik W , et al. Evaluating hazards at salt cavern sites using multichannel analysis of surface waves[J]. The Leading Edge, 2013,32(3):298-304.
doi: 10.1190/tle32030298.1
[38] Craig M Hayashi K. , Surface wave surveying for near-surface site characterization in the East San Francisco Bay Area,California[J].Interpretation, 2016, 4(4):SQ59-SQ69.
[39] Malehmir A, Wang S, Lamminen J , et al. Delineating structures controlling sandstone-hosted base-metal deposits using high-resolution multicomponent seismic and radio-magnetotelluric methods: a case study from Northern Sweden[J]. Geophys. Prospect, 2015,63:774-797.
doi: 10.1111/1365-2478.12238
[1] 刘现锋, 姜文龙, 王旭明, 马若龙, 胡文哲. 复杂地质条件下的面波探测技术应用研究[J]. 物探与化探, 2020, 44(2): 449-455.
[2] 刘云祯, 梅汝吾, 叶佩, 金荣杰. WD智能天然源面波数据采集处理系统及其应用试验[J]. 物探与化探, 2016, 40(5): 1007-1015.
[3] 刘飞, 成杭新, 杨柯, 赵传冬, 李括, 彭敏, 刘应汉. 广州市土壤—大气界面Hg交换通量研究[J]. 物探与化探, 2014, 38(2): 331-338.
[4] 李凤全, 潘虹梅, 叶玮, 朱丽东, 曹志纯. 城市灰尘地球化学研究进展[J]. 物探与化探, 2009, 33(3): 313-318.
[5] 夏学礼, 仇恒永, 孙秀容, 王治华, 王书增. 多道瞬态面波勘探频散曲线唯一性问题[J]. 物探与化探, 2008, 32(2): 168-170,174.
[6] 王振东. 面波勘探技术要点与最新进展[J]. 物探与化探, 2006, 30(1): 1-6,12.
[7] 朱立新, 马生明, 王之峰. 城市环境地球化学研究新进展[J]. 物探与化探, 2004, 28(2): 95-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com