Please wait a minute...
E-mail Alert Rss
 
物探与化探  2018, Vol. 42 Issue (2): 358-362    DOI: 10.11720/wtyht.2018.2.19
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于反正切法的定向钻孔雷达三维成像算法
刘四新, 王文天, 鹿琪, 李宏卿, 傅磊
吉林大学 地球探测科学与技术学院,吉林 长春 130026
A directional borehole radar 3D imaging algorithm based on arctangent method
LIU Si-Xin, WANG Wen-Tian, LU Qi, LI Hong-Qing, FU Lei
College of Geo-Exploration Sciences and Technology,Jilin University,Changchun 130026,China
全文: PDF(539 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 作为探地雷达的一种特殊方式,定向钻孔雷达系统除了能够探测地下目标的深度和径向距离外,还能够对钻孔四周目标进行方位识别,进而利用所求方位进行三维成像。本文所研究的定向钻孔雷达包含一个发射天线和4个接收天线,4个接收天线等角度分布在垂直于井轴的圆环上。基于4个接收天线所接收到的四个信号的微弱不同,提出利用反正切法计算目标方位角,再利用方位角和各道信号组合计算井周地层纵横切片的算法,最终实现钻孔雷达三维成像算法。利用数值模拟结果检验了算法的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:As a special mode of GPR, the directional borehole radar system can not only detect underground target depth and the radial distance but also identify the azimuth of target, and then it uses the azimuth for 3D imaging. The directional drilling radar in this paper consists of a transmitting antenna and four receiving antennas, and the four receiving antennas are distributed on the ring perpendicular to the borehole axis. Based on the insignificant difference between the four different receiving antenna signals, the authors propose the arctangent method for calculating azimuth angle. The combination of the azimuth angle and the signal produces the horizontal and vertical slice data, thus eventually realizing the borehole radar 3-D imaging algorithm. Finally, the effectiveness of the algorithm is verified by numerical simulation results.
收稿日期: 2017-06-05      出版日期: 2018-04-03
:  P631  
基金资助:国家重点研发专项(2016YFC0600505)和国家自然科学基金(41574109)共同资助
作者简介: 刘四新(1966-),男,教授,博士生导师,主要从事探地雷达、钻孔雷达及电磁波测井的方法理论研究工作。Email:liusixin@jlu.edu.cn
引用本文:   
刘四新, 王文天, 鹿琪, 李宏卿, 傅磊. 基于反正切法的定向钻孔雷达三维成像算法[J]. 物探与化探, 2018, 42(2): 358-362.
LIU Si-Xin, WANG Wen-Tian, LU Qi, LI Hong-Qing, FU Lei. A directional borehole radar 3D imaging algorithm based on arctangent method. Geophysical and Geochemical Exploration, 2018, 42(2): 358-362.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2018.2.19      或      https://www.wutanyuhuatan.com/CN/Y2018/V42/I2/358
[1] 曾昭发,刘四新,王者江,等.探地雷达方法原理及应用[M].北京:科学出版社,2006.
[2] 刘四新,曾昭发,徐波.钻孔雷达探测地下裂缝[J].吉林大学学报:地球科学版,2005,35(S1):128-13.
[3] 陈建胜,陈从新.钻孔雷达技术的发展和现状[J]. 地球物理学进展,2008,23(5):1634-1640.
[4] Motoyuki Sato,Takuya Takayama.A novel directional borehole radar system using optical electric field sensors[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007,45(8):2529-2535.
[5] Takuya Takayama,Motoyuki Sato.A Novel Direction-Finding Algorithm for Directional Borehole Radar[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007,45(8):2520-2528.
[6] Lytle R J, Laine E F.Design of Miniature directional antenna for geophysical probing from borehole[J]. IEEE Transaction Geoscience and Remote Sensing, 1978,16(6): 304-307.
[7] Siever K, Elsen R.Salt dome exploration by directional borehole radar wireline service[J]. International Conference on Ground Penetrating Radar,2010, 2010:1-5.
[8] Siever K, Elsen R, et al.A decade of directional borehole radar services: From past to future[J]. International Conference on Ground Penetrating Radar, 2012,2012:906-910.
[9] Satoshi Ebihara, Hideaki Kawai, et al.Estimating the 3D position and inclination of a planar interface with a directional borehole radar[J]. Near Surface Geophysics, 2013,11(2):185-195.
[10] Satoshi Ebihara, Akihito Sasakura.Mode Effect on Direct Wave in Single-Hole Borehole Radar[J]. IEEE Transactions On Geoscience And Remote Sensing, 2011,49(2):854-8676038.
[11] Satoshi Ebihara, Yoshihiro Inoue.Analysis of Eccentered Dipole Antenna for Borehole Radar[J]. IEEE Transactions On Geoscience And Remote Sensing, 2009,47(4):1073-1088.
[12] Satoshi Ebihara, Takashi Yamamoto.Resonance Analysis of a Circular Dipole Array Antenna in Cylindrically Layered Media for Directional Borehole Radar[J]. IEEE Transactions On Geoscience And Remote Sensing,2006, 44(1):22-31.
[13] Satoshi Ebihara.Super-Resolution of Coherent Targets by a Directional Borehole Radar[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(4):1725-1732.
[14] Giannopoulos A.Modelling ground penetrating radar by GprMax. Construction & Building Materials,2005, 19(19): 755-762.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com