Please wait a minute...
E-mail Alert Rss
 
物探与化探  2007, Vol. 31 Issue (3): 189-192    
  区测与资源勘查 本期目录 | 过刊浏览 | 高级检索 |
利用三维GPR探测 北极夏季海冰厚度及下表面形态特征分析
王帮兵1, 孙波2, 田钢3, 郭井学1, 汪大立2
1. 吉林大学地球探测科学与技术学院, 吉林 长春 130026;
2. 中国极地研究中心, 上海 200129;
3. 浙江大学 理学院地球科学系, 浙江 杭州 310027
THE APPLICATION OF THE 3D GPR METHOD TO MEASURING THE DEPTH OF ARCTIC SUMMER SEA ICE AND ANALYZING ITS UNDERSIDE MORPHOLOGY
WANG Bang-bing1, SUN Bo2, TIAN Gang3, GUO Jing-xue1, WANG Da-li2
1. Department of Geophysics, Jilin University, Changchun 130026, China;
2. Polar Research Institute of China, ShangHai 200129, China;
3. Department of Earth Science, ZheJiang University, Hangzhou 310027, China
全文: PDF(613 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

海冰在全球气候系统中扮演着重要角色.在中国第二次北极科学考察中,使用3D雷达探测结合冰钻进行海冰测量.雷达剖面上可清楚识别冰-水界面,与冰钻测量结果较好地吻合.雷达3D图像清晰显示了冰底界面在3D方向的起伏变化以及冰内构造的空间展布情况.对三维探测区域内海冰厚度统计显示,所测冰盘的平均厚度为4.15 m,较厚的区域位于左下角,最大厚度约为6.4 m,较薄的区域是在中央和左上角区域,最小的厚度小于3.0 m.经过进一步计算可提供如海冰上下表面面积、海冰体积等参数,为遥感和数值模拟提供地面校核数据,也为海冰形成机制和动力作用过程研究提供佐证和依据.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Sea ice plays an important role in the global climate system. The authors combined 3D GPR with drilling during China's second national Arctic research expedition. The interface of ice and sea water can be recognized clearly from the GPR section, consistent with the drilling result. 3D GPR Cube illustrates distinctly the underside morphology and the spatial spreading of inner structure of the Arctic sea ice. After additional calculation, some parameters, such as the upper and bottom surface areas and the volume of sea-ice, can be figured out and then serve as on-the-spot checkout data for the remote sensing and the data simulator. These data also provide the evidence and proof for the study of the formation mechanism and the course of dynamic effect of the sea ice.

收稿日期: 2006-07-28      出版日期: 2007-06-24
: 

P631

 
基金资助:

自然科学基金资助(40476005,40231013)、科技部公益项目(2005DIB3J114)及863项目(2006AA09Z152,2006AA04Z206)

作者简介: 王帮兵(1968-),男,1992年7月毕业于成都地质学院应用地球物理专业,2004年9月考入吉林大学地球探测科学与技术学院攻读博士学位.主要从事近地表地球物理方法研究,特别是浅层地震和探地雷达勘探技术.现在中国极地研究中心从事极地地球物理方法研究,已发表多篇论文.
引用本文:   
王帮兵, 孙波, 田钢, 郭井学, 汪大立. 利用三维GPR探测 北极夏季海冰厚度及下表面形态特征分析[J]. 物探与化探, 2007, 31(3): 189-192.
WANG Bang-bing, SUN Bo, TIAN Gang, GUO Jing-xue, WANG Da-li. THE APPLICATION OF THE 3D GPR METHOD TO MEASURING THE DEPTH OF ARCTIC SUMMER SEA ICE AND ANALYZING ITS UNDERSIDE MORPHOLOGY. Geophysical and Geochemical Exploration, 2007, 31(3): 189-192.
链接本文:  
https://www.wutanyuhuatan.com/CN/      或      https://www.wutanyuhuatan.com/CN/Y2007/V31/I3/189

[1] Barry R G,Serreze M C,Maslanik J A,et al.The Arctic sea ice-climate system:observations and modeling[J].Rev Geophys,1993, 31(4):397.
[2] Dickson B.All change in the Arctic[J].Nature,1999:397,389.
[3] Comiso J C.A rapidly declining perennial sea ice covers in the Arctic[J].Geophys Res Lett,2002,29(17):1.
[4] Rigor I G,Wallace J M,Colony RL.Response of sea ice to the Arctic Oscillation[J].J Clim,2002,15:2648.
[5] Rothrock D A,Zhang J.What explains its recent depletion[J].J Geophys Res,2005,110(C01002):1.
[6] Kerr R A.Will the Arctic Ocean lose all its ice[J].Science,1999,286:1828.
[7] Hilmer M,Lemke P.On the Decrease of Arctic sea ice volume[J].Geophys Res Lett,2000, 27(22):3751.
[8] Holloway G,Sou T.Has Arctic sea ice rapidly thinned[J].J Clim, 2002,15:1691.
[9] Hudson R.Annual Measurement of sea-ice thickness using an upward-looking sonar[J].Nature,1990,344:135.
[10] Wadhams P.The underside of Arctic sea ice image by sidescan sonar[J].Nature,1988,333:161.
[11] Haas C,Gerland S,Eicken H,et al.Comparison of sea ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device[J].Geophysics,1997,62:749.
[12] Haas C,Eicken H.Interannual variability of summer sea ice thickness in the Siberian and Central Arctic under different atmospheric circulation regimes[J].J Geophys Res,2001,106(C3):4449.
[13] James E R,WorbyzA P,Vrbancich J,et al.Shipborne electromagnetic measurements of Antarctic sea-ice thickness[J].Geophysics,2003,68(5):1537.
[14] Kovacs A,Morey R M.Sea ice thickness versus impulse radar time-of-flight data.Cold Reg Sci Technol,1990,18(1):91.
[15] Morey R M,Kovacs A,Cox G F N.Electromagnetic properties of sea ice.Cold Regions Science and Technology,1984(9):53.
[16] Sun B, Jia J H,He M B,et al.Sea-ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean[J].Sci China (D),2003,46(11):1151.

[1] 刘荻, 李贺. 物探检测方法在石拱桥病害整治工程中的应用[J]. 物探与化探, 2012, 36(S1): 119-123.
[2] 苏艳平, 薛国强, 周楠楠, 徐赤斌. 板状体瞬变电磁正演计算系统[J]. 物探与化探, 2012, 36(S1): 132-136.
[3] 原文涛. 瞬变电磁法在采空区及陷落柱探测中的应用[J]. 物探与化探, 2012, 36(S1): 164-167.
[4] 郝治国, 贾树林, 文群林. 综合物探方法在采空区及其富水性探测中的应用[J]. 物探与化探, 2012, 36(S1): 102-106.
[5] 黄群. 应用高密度电测深法和瞬变电磁法探测煤矿采空区[J]. 物探与化探, 2012, 36(S1): 107-110.
[6] 薛永军, 武秀芳, 仲丛明, 李玉林. 煤矿小窑采空区及塌陷区的地球物理勘查[J]. 物探与化探, 2012, 36(S1): 111-113.
[7] 郭伟立, 薛国强, 周楠楠, 肖宏跃. 利用瞬变电磁法监测煤矿含水采空区[J]. 物探与化探, 2012, 36(S1): 114-118.
[8] 张淑婷. 地球物理勘查技术在探测煤矿采空区中的应用[J]. 物探与化探, 2012, 36(S1): 83-87.
[9] 孙林. 高密度电阻率法与浅层地震在探测煤田采空区中的应用[J]. 物探与化探, 2012, 36(S1): 88-91.
[10] 郄卫东. 瞬变电磁法在探测煤矿采空区及塌陷区中的应用[J]. 物探与化探, 2012, 36(S1): 92-95.
[11] 何进, 张亚峰, 韦建江. 煤矿采空区综合地球物理方法探测[J]. 物探与化探, 2012, 36(S1): 96-101.
[12] 赵明宣, 马惠珍, 辛永祺. 三种物探方法在煤矿采空区勘查中的应用效果对比[J]. 物探与化探, 2012, 36(S1): 51-56.
[13] 苏兆锋, 陈昌彦, 肖敏, 贾辉, 白朝旭. 精细高密度电阻率法在白云岩矿采空区中的应用[J]. 物探与化探, 2012, 36(S1): 45-47.
[14] 刘明, 王东华, 李波. CSAMT采集频率与相位参数在采空区勘查中的应用[J]. 物探与化探, 2012, 36(S1): 48-50.
[15] 周楠楠, 薛国强. 瞬变电磁勘查中圆回线模拟方形回线的误差分析[J]. 物探与化探, 2012, 36(S1): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com