Please wait a minute...
E-mail Alert Rss
 
物探与化探  2003, Vol. 27 Issue (6): 473-475,489    
  论文 本期目录 | 过刊浏览 | 高级检索 |
被污染土壤的植物修复研究
周国华
中国地质科学院 物地球物理地球化学勘查技术研究所, 河北 廊坊 065000
PHYTOREMEDIATION IN CONTAMINATED SOIL
ZHOU Guo-hua
Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
全文: PDF(385 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

植物修复是利用植物吸收、降解、挥发、根滤、稳定、泵吸等作用机理,达到去除土壤、水体中污染物,或使污染物固定以减轻其危害性,或使污染物转化为毒性较低化学形态的现场治理技术.植物修复对于重金属污染土壤的治理修复具有重要意义.已有研究在累积与超累积植物的寻找筛选、植物对重金属等有害物的耐毒和解毒机理、植物修复现场环境调控及根际处理技术等方面取得了大量成果.现代分子生物学、基因工程技术发展有可能使植物修复技术取得重大突破.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢磊磊
蒋甫玉
常文凯
关键词 探地雷达FDTD正演GPRSIM软件水下砂层工程勘察    
Abstract

Remediation of soil contaminated by heavy metals remains a difficult problem in the world. Phytoremediation is a new technique to eliminate contaminants or weaken their adverse effects on ecosystem by such means as phytoextraction, phytodegradation, phytovolatilization, rhizofiltration, phytostabilization and hydraulic pumping. Hyperaccumulator and accumulator plants play an important role in soil remediation. In the past decade some achievements have been made on the selection of hyperaccumulator plants and investigation of their mechanism on detoxification and hyperaccumulation with the help of molecule biology and gene technique as well as rhizosphere treatment and planting management. With the introduction of molecular biology and gene technique, we can expect a breakthrough in this technology in near future.

Key wordsGPR    FDTD    forward simulation    GPRSIM software    underwater sand    engineering exploration
收稿日期: 2003-09-10      出版日期: 2003-12-24
: 

P632

 
基金资助:

国家973项目(G19990457)资助

作者简介: 周国华(1964-),男,浙江昆山人,1989年获长春地质学院岩化专业硕士学位,现为中国地质大学(北京)在读博士,发表论文20余篇.
引用本文:   
周国华. 被污染土壤的植物修复研究[J]. 物探与化探, 2003, 27(6): 473-475,489.
ZHOU Guo-hua . PHYTOREMEDIATION IN CONTAMINATED SOIL. Geophysical and Geochemical Exploration, 2003, 27(6): 473-475,489.
链接本文:  
https://www.wutanyuhuatan.com/CN/      或      https://www.wutanyuhuatan.com/CN/Y2003/V27/I6/473

[1] 谢学锦,徐邦樑.铜矿指示植物海州香薷[J].地质学报.32(4):88-90.
[2] Brooks R R,Lee J,Reeves R D,et al.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J].Journal of Geochemical Exploration, 1977,7:49-57.
[3] Brooks R R.Plant that hyperaccumulate heavy metals[M]. CAB International, Wallingford, Oxon, UK, 1998,392.
[4] Cunningham S D,Ow D W.Promises and Prospects of Phytoremediation[J]. Plant physiology, 1996, 110:715-716.
[5] Baker A J M,Reeves R D,Hajar A S M.Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens[J].New phytol., 1994, 127:61-68.
[6] Lasat M M,Baker A J M,Kochian L V.Physiological characterisation of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J].Plant physiology,1996,112:1715-1722.
[7] Robinson B H,Chiarucci A,Brooks R R,et al.The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel[J].Journal of Geochemical Exploration, 1997,59:75-86.
[8] Bizily S P,Rugh C L,Summers A O,et al.Phytoremediation of methylmercury pollution:merB expression in Arabidopsis thaliana confers resistance to organomercurials[J].Economy, 1999,96.
[9] Salt D A,Smith R D,Raskin I.Annual review of plant physiology and plant molecular biology[J].Phytoremediation,1998, 49.
[10] Teery N,de Souza M.Phytoremediation of Selenium in soil and water[M]. Proceedings of SoilRem 2000, 2000, 156-160.
[11] Meagher R B,Rugh C L,Kandasamy M K,et al.Engineering phytoremediation of mercury pollution in soil and water using bacterial genes[A].In:Terry N,Baelos G S.Phytoremediation of contaminated soil and water[C].Ed CRC Press Inc, Boca Raton, FL,USA, 2000, 201-219.
[12] 张从,夏立江.污染土壤生物修复技术[M]. 北京:中国环境科学出版社,2000.
[13] 蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
[14] 周国华,黄怀曾,何红蓼.重金属污染土壤植物修复及进展[J].环境污染治理技术与设备,2002,3(6):33-39.
[15] Chen T B,Wei C Y.Arsenic hyperaccumulation in some plant species in south China[M].Proceedings of SoilRem,2000.

[1] 孙思源, 余学中, 谢汝宽, 何怡原, 单希鹏, 李诗珺. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.
[2] 杨丹, 李伟, 魏永梁, 宋斌. 双树复小波变换在川藏铁路拉林段某隧道超前地质预报中的应用[J]. 物探与化探, 2021, 45(6): 1504-1511.
[3] 王博, 郭良辉, 崔亚彤, 王祥. 三维Tesseroid网格模型重力异常正演方法及并行算法[J]. 物探与化探, 2021, 45(6): 1597-1605.
[4] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[5] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[6] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[7] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[8] 吴洋, 严家斌. 基于压电效应的大地极化声子模拟研究[J]. 物探与化探, 2021, 45(3): 742-749.
[9] 周武, 罗威, 蓝星, 简兴祥. 大地电磁交错采样有限差分二维正反演研究[J]. 物探与化探, 2021, 45(2): 458-465.
[10] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[11] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[12] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
[13] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[14] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[15] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com