Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 191-197    DOI: 10.11720/wtyht.2022.1243
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
煤矿老窑采空区地—井TEM响应特征
张建智1(), 胡富杭2, 刘海啸1, 邢国章3
1.中国煤炭地质总局 地球物理勘探研究院,河北 涿州 072750
2.浙江华东建设工程有限公司,浙江 杭州 310014
3.北京市地质工程勘察院,北京 100048
TEM response characteristics of borehole in goaves of old coal mines
ZHANG Jian-Zhi1(), HU Fu-Hang2, LIU Hai-Xiao1, XING Guo-Zhang3
1. Research Institute of Coal Geophysical Exploration, China National Administration of Coal Geology, Zhuozhou 072750, China
2. Zhejiang Huadong Construction Engineering Co., Ltd.,Hangzhou 310014, China
3. Beijing Institute of Geological & Prospecting Engineering,Beijing 100048, China
全文: PDF(5314 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

瞬变电磁法在我国广泛应用于煤田水文地质勘探和采空区调查,但由于方法本身的特点,地面装置纵向分辨率低,无法实现采空区精细探测。在山西某煤矿采空区探查项目中,通过岩心、测井曲线,结合以往电法勘探经验,建立了简单的煤系地层采空区模型,数值模拟了均匀半空间采空区含水、不含水时的地面瞬变电磁响应和三维水平薄板的地—井瞬变电磁响应,并结合实际案例探讨了采空区的地面、地—井瞬变电磁特征,证实了地—井瞬变电磁法具有较高的纵向分辨率,为采空区精细探查提供了思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建智
胡富杭
刘海啸
邢国章
关键词 地—井TEM采空区数值模拟分辨率    
Abstract

The transient electromagnetic (TEM) method is widely used in coalfield hydrogeological exploration and goaf investigation in China. However, due to the characteristics of the method itself, the vertical resolution of the ground device is low, and thus it is impossible to realize the fine detection of goaves. In a goaf exploration project of a coal mine in Shanxi Province, a simple goaf model of coal measure strata was established according to the study on cores and logging curves, as well as previous experience of electrical exploration. Based on this, numerical simulation was conducted for the ground TEM response of goaves with and without water in a homogeneous half-space and the ground-well TEM response of three-dimensional horizontal thin plates. As confirmed by the characteristics of the ground and ground-well TEM response of goaves in some practical cases, the ground-well TEM has high vertical resolution, which provides an idea for fine exploration of goaves.

Key wordsground-well TEM    Goaf    Numerical simulation    resolution
收稿日期: 2021-04-29      修回日期: 2021-08-24      出版日期: 2022-02-20
ZTFLH:  P631.4  
作者简介: 张建智(1978-),男,正高级工程师,2002年毕业于石家庄经济学院水文地质与工程地质专业,长期从事地质、地球物理研究工作。Email: 3224827@qq.com
引用本文:   
张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
ZHANG Jian-Zhi, HU Fu-Hang, LIU Hai-Xiao, XING Guo-Zhang. TEM response characteristics of borehole in goaves of old coal mines. Geophysical and Geochemical Exploration, 2022, 46(1): 191-197.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1243      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/191
Fig.1  含水采空区瞬变电磁多测道响应
Fig.2  不含水采空区瞬变电磁多测道响应
Fig.3  磁性源地—井TEM装置示意
Fig.4  低阻薄板的三分量瞬变电磁响应
Fig.5  高阻薄板的三分量瞬变电磁响应
Fig.6  瞬变电磁反演电阻率断面
Fig.7  顺5煤层电阻率切片综合成果
Fig.8  钻孔J-2中三分量瞬变电磁响应曲线
Fig.9  钻孔J-3中三分量瞬变电磁响应曲线
Fig.10  采空区综合解释成果
[1] 张胤彬, 张华, 杨海燕, 等. 瞬变电磁法在煤矿水文地质灾害调查中的应用[J]. 物探与化探, 2012,36(2):283-286.
[1] Zhang Y B, Zhang H, Yang H Y, et al. The application of TEM to the investigation of hydrogeological disaster in the coal mine[J]. Geophysical and Geochemical Exploration, 2012,36(2):283-286.
[2] 蒋邦远. 使用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.
[2] Jiang B Y. Applid near zone magnetic source transient electromagnetic exploration [M]. Beijing: Ggeological Publishing House, 1998.
[3] 张建智, 易才华, 李娜. 煤矿浅埋老窑采空区多梯度剖面装置探测研究[J]. 中国煤炭地质, 2012,24(5):60-65.
[3] Zhang J Z, Yi C H, Li N. A study on multi-gradient profiling array in detection of coalmine shallow gob area[J]. Coal Geology of China, 2012,24(5):60-65.
[4] 张建智. 瞬变电磁法在沉积型铁矿采空区探测中的应用[J]. 土工基础, 2019,33(4):525-527,532.
[4] Zhang J Z. Application of TEM to determine the dimensions of the abandoned mine voids[J]. Soil Eng. and Foundation, 2019,33(4):525-527,532.
[5] 吴德胜, 吴丰收, 苏有财, 等. 隧道煤层采空区的探测技术[J]. 物探与化探, 2012,36(s1):16-19.
[5] Wu D S, Wu F S, Su Y C, et al. A tentative discussion on detection technology of coal seam goaf in a tunnel[J]. Geophysical and Geochemical Exploration, 2012,36(s1):16-19.
[6] 薛国强, 潘东明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(5):2187-2192.
[6] Xue G Q, Pan D M, Yu J C. Review the application of geophysical methods for mapping coal-mine void[J]. Progress in geophysics, 2018,33(5):2187-2192.
[7] 张杰, 邓晓红, 谭捍东, 等. 地—井瞬变电磁资料矢量交会解释方法[J]. 物探与化探, 2015,39(3):572-579.
[7] Zhang J, Deng X H, Tan H D, et al. A study of vector intersection for borehole transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2015,39(3):572-579.
[8] 杜庆丰, 冯晓兰, 黄跃. 地—井瞬变电磁关键技术问题研究[J]. 物探与化探, 2019,43(1):143-147.
[8] Du Q F, Feng X L, Huang Y. Research on key technical problems of surface-borehole TEM[J]. Geophysical and Geochemical Exploration, 2019,43(1):143-147.
[9] 张杰, 王兴春, 邓晓红, 等. 地—井瞬变电磁井旁板状导体异常响应特征分析[J]. 物探化探计算技术, 2014,36(6):641-648.
[9] Zhang J, Wang X C, Deng X H, et al. Borehole TEM response characteristics of the borehole-side plate-like conductor[J]. Computing Techniques for Geophysical and Geochemical Explotation, 2014,36(6):641-648.
[10] 杨毅, 邓晓红, 张杰, 等. 一种井中瞬变电磁异常反演方法[J]. 物探与化探, 2014,38(4):855-859.
[10] Yang Y, Deng X H, Zhang J, et al. Aborehole TEM anomaly inversion method[J]. Geophysical and Geochemical Exploration, 2014,38(4):855-859.
[11] 武军杰, 李貅, 智庆全, 等. 电性源地—井瞬变电磁法三分量响应特征分析[J]. 地球物理学进展, 2017,32(3):1273-1278.
[11] Wu J J, Li X, Zhi Q Q, et al. Analysis of three component TEM response characteristic of electric source dill hole TEM[J]. Progress in Geophysics, 2017,32(3):1273-1278.
[12] 孟庆鑫, 潘和平. 地—井瞬变电磁响应特征数值模拟分析[J]. 地球物理学报, 2012,55(3):1046-1053.
[12] Meng Q X, Pan H P. Numerical simulation analysis of surface-hole TEM responses[J]. Chinese Journal of Geophysics, 2012,55(3):1046-1053.
[13] Oristaglio M L, Homanng C W. Diffusion of electromagnetic fields into a two-dimensional Earth: A finite-difference approach[J]. Geophysics, 1984,49(7):870-894.
doi: 10.1190/1.1441733
[14] 闫述, 陈明生, 傅君眉. 瞬变电磁场的直接时域数值分析[J]. 地球物理学报, 2002,45(2):275-284.
[14] Yan S, Chen M S, Fu J M. Direct time-dimain numerical analysis oftransient electromagnetic fields[J]. Chinese Journal of Geophysics, 2002,45(2):275-284.
[15] 阮百尧. 均匀水平大地上频率域垂直磁偶源电磁场数值滤波解法[J]. 桂林工学院学报, 2005,25(1):14-18.
[15] Ruan B Y. Digital filter method of evaluating electromagnetic field from a vertical magnetic dipole above the homogeneous earth[J]. Journal of Guilin University of Technology, 2005,25(1):14-18.
[16] 辛会翠. 瞬变电磁法 2.5 维有限差分正演模拟研究[D]. 长沙:中南大学, 2013.
[16] Xin H C. Research on transient electromagnetic 2.5-D FDTD forward modeling[D]. Changsha: Central South University, 2013.
[1] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[2] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[3] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[4] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[5] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[6] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[7] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[8] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
[9] 岳航羽, 张明栋, 张保卫, 王广科, 王小江, 刘东明. 高分辨率单道地震探测技术在内陆浅水区的试验研究[J]. 物探与化探, 2022, 46(4): 914-924.
[10] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[11] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[12] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[13] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[14] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[15] 赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com