Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 223-229    DOI: 10.11720/wtyht.2021.2596
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
三江平原西部土壤硒分布特征及其影响因素
牛雪1(), 何锦1,2(), 庞雅婕1, 明圆圆1
1.中国地质调查局 水文地质环境地质调查中心,河北 保定 071051
2.吉林大学 环境与资源学院,吉林 长春 130026
Distribution feature of soil selenium in west Sanjiang plain and its influencing factors
NIU Xue1(), HE Jin1,2(), PANG Ya-Jie1, MING Yuan-Yuan1
1. Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
2. Institute of Environment and Resources, Jilin University, Changchun 130026, China
全文: PDF(2152 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来在黑龙江三江平原局部地区发现有珍贵的富硒土地,但对三江平原土壤硒的分布以及土壤硒含量的控制因素研究较少。三江平原西部地区土地质量地球化学调查发现,该区表层土壤主要以足硒为主,未见硒中毒土壤,富硒土壤主要分布于完达山山前至沿挠力河之间的冲湖积低平原地区,少量分布于萝北县城北部的湖成剥蚀台地,硒不足或硒潜在不足地区主要沿松花江河流以及萝北地区黑龙江古河道展布。根据相关性分析、因子分析、聚类分析结果,并结合硒元素地球化学空间分布,认为三江平原表层土壤硒含量主要受表层土壤中有机质以及土壤质地中黏土的吸附作用影响,铁、锰等氧化物以及土壤pH对硒富集具有一定影响,但作用较小。土壤环境质量综合评价显示三江平原地区多为无风险区,是一块珍贵的清洁土地资源,当地可依托富硒土地发展绿色富硒农业。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛雪
何锦
庞雅婕
明圆圆
关键词 三江平原土壤分布特征影响因素    
Abstract

In recent years, precious selenium-rich land has been discovered in Sanjiang plain, Heilongjiang Province; nevertheless, studies of the distribution and the controlling factors of soil selenium content have been rarely reported. Geochemical investigation of land quality in the western part of Sanjiang plain has revealed that the surface soil in this area is mainly sufficient, without selenium poisoning. The selenium-rich soil is mainly distributed in the alluvial lacustrine low plain area between the front of Wanda Mountain and the Naoli River, and secondarily distributed in the lacustrine denudation platform in the north of Luobei County. The selenium-deficient and selenium-potential-deficient areas mainly existalong the Songhua River and the ancient course of Luobei River in Luobei area. Based on the combination of statistical correlation analysis, factor analysis, clustering analysis and the selenium spatial distribution, the authors consider that the selenium content in the surface soil of Sanjiang plain is mainly affected by the adsorption of organic matter and clay minerals in the surface soil. Oxides of iron, manganese and other elements as well as soil pH have a relatively weaker effect on selenium enrichment.The comprehensive evaluation of soil environmental quality shows that Sanjiang plain area is mostly a risk-free area, which is a precious clean land resource. Green selenium-rich agriculture can be developed by relying on selenium-rich land.

Key wordsSanjiang plain    soil    selenium    distribution characteristics    influencing factors of content
收稿日期: 2019-12-18      修回日期: 2020-08-22      出版日期: 2021-02-20
ZTFLH:  S158.5  
  S159.2  
基金资助:中国地质调查局项目(121201012000161317);中国地质调查局项目(DD20190339)
通讯作者: 何锦
作者简介: 牛雪(1987-),男,工程师,硕士,主要从事水工环地质调查工作。Email:niuxue1007@163.com
引用本文:   
牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
NIU Xue, HE Jin, PANG Ya-Jie, MING Yuan-Yuan. Distribution feature of soil selenium in west Sanjiang plain and its influencing factors. Geophysical and Geochemical Exploration, 2021, 45(1): 223-229.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.2596      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/223
Fig.1  研究区位置及地貌示意
(地貌图据杨湘奎等[21]改绘)
类型 样品数 均值/10-6 最小值/10-6 最大值/10-6 中位数/10-6 标准离差 变异系数
表层土壤 4287 0.25 0.06 2.27 0.23 0.1 0.39
深层土壤 1404 0.11 0.02 2.03 0.1 0.07 0.67
Table 1  表层土壤与深层土壤硒元素统计值
Fig.2  三江平原西部深层土壤(a)与表层土壤(b)硒分布特征
地貌单元 土壤岩性 样品数 最小值/10-6 最大值/10-6 算术平均值/10-6 变异系数
2 含泥质砂砾石 281 0.12 0.46 0.2 0.22
3-2 泥砂砾质 1164 0.09 0.69 0.2 0.3
3-1 砂砾石 799 0.06 0.88 0.23 0.44
2 粉质黏土 1256 0.06 0.63 0.28 0.31
20 0.2 0.51 0.31 0.23
1 粉质黏土 767 0.12 1.33 0.31 0.31
Table 2  各地貌单元表层土壤中硒元素含量统计值
指标 成分
F1 F2 F3
Ni 0.85 0.17 0.11
Cr 0.83 0.26 0.09
V 0.81 0.10 0.09
Sc 0.81 0.16 0.27
Cu 0.80 0.35 0.02
Ti 0.66 -0.06 -0.06
Fe2O3 0.66 0.07 0.32
Na2O -0.65 -0.40 -0.19
K2O -0.58 -0.51 0.26
Ge 0.42 -0.30 0.40
C 0.16 0.93 0.00
Corg 0.20 0.92 0.01
N 0.28 0.90 -0.01
S 0.14 0.84 0.03
Se 0.34 0.46 -0.05
U -0.04 0.42 0.39
Rb 0.01 -0.13 0.85
Tl -0.24 0.02 0.81
Al2O3 0.26 -0.09 0.76
Ga 0.42 0.11 0.74
Be 0.06 0.06 0.73
Li 0.43 0.24 0.65
F 0.35 0.24 0.58
Table 4  研究区表层土壤主因子载荷
F1 F2 F3 F4 F5 F6 F7 F8 F9
方差贡献率/% 15.516 11.302 10.802 8.127 8.115 7.254 4.811 4.046 3.248
累积方差贡献率/% 15.516 26.819 37.621 45.748 53.862 61.117 65.927 69.973 73.221
Table 3  研究区表层土土壤因子方差贡献率
Fig.3  研究区表层土壤R型聚类分析
元素 有机质 pH MgO Na2O SiO2 Al2O3 CaO Fe2O3 K2O Mn
相关系数 0.425** 0.039** 0.124** -0.508** -0.013 -0.175** 0.017 0.297** -0.512** 0.205**
Table 5  表层土壤硒与各理化指标的相关系数
等级 无风险区 风险可控 风险较高
点数 4279 6 0
比例/% 99.81 0.19 0.00
Table 6  土壤环境质量化学综合等级统计
[1] 中国科学院地理研究所与化学地理研究室环境与地方病组. 我国土壤表层硒含量的地理分布及其与人畜硒反应病的关系[J]. 地理研究, 1984,13(4):39-47.
[1] Environment and Endemie Diseases Seetion,Institute of Geography and Academia Sinica. Geographical distribution of selenium content in the top soils in China and it’s association with selenium-reoponsive diseases in man and animal[J]. Geographical Research, 1984,13(4):39-47.
[2] 谭见安, 朱文郁, 李日邦, 等. 克山病与环境硒等生命元素的关系[J]. 中国地方病学杂志, 1991,10(5):269-274.
[2] Tan J A, Zhu W Y, Li R B, et al. The relationship between Keshan disease and environmental selenium and other life elements[J]. Chinese Journal of Endemiology, 1991,10(5):269-274.
[3] 邵国璋, 关光伟. 黑龙江省土壤硒(Se)元素背景值与地方性疾病的关系[J]. 中国环境监测, 1993,9(2):61-62.
[3] Shao G Z, Guan G W. Relation between Se background values and endemic diseases in Heilongjiang Province[J]. China Environmental Monitoring, 1993,9(2):61-62.
[4] 吕瑶瑶, 余涛, 杨忠芳, 等. 大骨节病区硒元素分布的调控机理研究——以四川省阿坝地区为例[J]. 环境化学, 2012,31(7):935-944.
[4] Lyu Y Y, Yu T, Yang Z F, et al. Study on the regulatory mechanism of selenium distribution in Kashin-beck disease areas: A case study of aba area, Sichuan Province[J]. Environmental Chemistry, 2012,31(7):935-944.
[5] Ure A M, Berrow M L. The elemental composition of soils environmental chemistry(2nd Ed)[M]. London:The Royal Socienty of Chemistry, 1982: 94-204.
[6] 王子健, 赵利华, 彭安. 低硒带土壤中硒的挥发过程研究[J]. 环境化学, 1989,8(2):7-11.
[6] Wang Z J, Zhao L H, Peng A. Selenium evaportion from soils of Chinese Se-defficient belt[J]. Environmental Chemistry, 1989,8(2):7-11.
[7] 戴慧敏, 宫传东, 董北, 等. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 2015,52(6):1356-1364.
[7] Dai H M, Gong C D, Dong B, et al. Distribution of soils selenium in the Northeast China Plain and its influencing factors[J]. Acta Pedologica Sinica, 2015,52(6):1356-1364.
[8] 刘国栋, 崔玉军, 刘立芬, 等. 土地质量地球化学平价方法研究与应用:以黑龙江省宏胜镇为例[J]. 现代地质, 2017,31(1):167-176.
[8] Liu G D, Cui Y J, Li L F, et al. The study and application of land quality geochemical evaluation method: Illustrated by the case of Hongsheng town, Heilongjiang Province[J]. Geoscience, 2017,31(1):167-176.
[9] 庞雅婕, 何锦, 牛雪, 等. 三江平原富Se地区地下水—土壤—农作物中Se富集规律及影响因素[J]. 生态环境学报, 2017,26(7):1137-1144.
[9] Pang Y J, He J, Niu X, et al. Enrichment regularities and influence factors of selenium in groundwater-soil-crop seeds at a Se-rich area of the Three River Plain, China[J]. Ecology and Environmental Sciences, 2017,26(7):1137-1144.
[10] 王甘露, 朱笑青. 贵州省土壤硒的背景值研究[J]. 环境科学研究, 2003,16(1):23-26.
[10] Wang G L, Zhu X Q. Background value of selenium in soil of Guizhou Province[J]. Environmental Science Research, 2003,16(1):23-26.
[11] 王美珠, 章明奎. 我国部分高硒低硒土壤的成因初探[J]. 浙江大学学报:农业与生命科学版, 1996,22(1):89-93.
[11] Wang M Z, Zhang M K. A discussion on the cause of high-Se and low-Se soil information[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 1996,22(1):89-93.
[12] 朱建明, 左维, 秦海波, 等. 恩施硒中毒区土壤高硒的成因:自然硒的证据[J]. 矿物学报, 2008,28(4):397-400.
[12] Zhu J M, Zuo W, Qin H B, et al. An investigation on the source of soil Se in Yutangba,Enshi: Evidence from native selenium[J]. Acta Mineralogica Sinica, 2008,28(4):397-400.
[13] Zhu J M, Wang N, Li S H, et al. Distribution and transport of selenium in Yutangba,China: Impact of human activities[J]. Sci. Total. Environ., 2008,392(2-3):252-261.
doi: 10.1016/j.scitotenv.2007.12.019 pmid: 18215743
[14] Sun G X, Meharg A A, Li G, et al. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?[J]. Scientific Reports, 2016,6:20953-20961.
pmid: 26883576
[15] Blazina T, Sun Y, Voegelin A, et al. Terrestrial selenium distribution in China is potentially linked to monsoonal climate[J]. Nature Communications, 2014,5(9):1.
[16] 魏明辉, 陈树清, 谷振飞, 等. 河北平原区表层土壤富硒成因初探[J]. 河北地质, 2012(4):29-31.
[16] Wei M H, Chen S Q, Gu Z F, et al. The causes of rich surface soil selenium in Hebei plain[J]. Hebei Geology, 2012(4):29-31.
[17] Uemsh C G, Subhas C G. Selenium deficiency in soils and crops and its impact on anmial and human helath[J]. Current Nutrition & Food Science, 2010,6(4):268-280.
[18] Malisa E P. The Behaviour of selenium in geological processes[J]. Environmental Geochemistry and Health, 2001,23(2):137-158.
doi: 10.1023/A:1010908615486
[19] 夏学齐, 杨忠芳, 薛圆, 等. 黑龙江省松嫩平原南部土壤硒元素循环特征[J]. 现代地质, 2012,26(5):850-858.
[19] Xia X Q, Yang Z F, Xue Y, et al. Geochemical circling of soil Se on the southern Song-Nen Plain,Heilongjiang Province[J]. Geoscience, 2012,26(5):850-858.
[20] 迟凤琴, 徐强, 匡恩俊, 等, 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016,53(5):1262-1274.
[20] Chi F Q, Xu Q, Kuang E J, et al. Distribution of selenium and its influencing factors in soils of Heilongjiang Province,China[J]. Acta Pedologica Sinica, 2016,53(5):1262-1274.
[21] 杨湘奎, 杨文, 张烽龙, 等. 三江平原地下水资源潜力与生态环境地质调查评价[M]. 北京: 地质出版社, 2008: 5-25.
[21] Yang X K, Yang W, Zhang F L, et al. Investigation and assessment evaluation of groundwater resources potential and eco-environment geology in Sanjiang Plain [M]. Beijing: Geological Publishing House, 2008: 5-25.
[22] 徐春青, 傅有丰, 徐忠宝, 等. 黑龙江省土壤、饲料中硒的含量及其分布[J]. 东北农业大学学报, 1986,17(4):399-406.
[22] Xu C Q, Fu Y F, Xu Z B, et al. Selenium content and distribution in soil and feed in Heilongjiang Province[J]. Journal of Northeast Agricultural College, 1986,17(4):399-406.
[23] 谭见安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989: 39.
[23] Tan J A. The atlas of endemic disease and environment of the People’s Republic of China[M]. Beijing: Science Press, 1989: 39.
[24] 何锦, 庞雅婕, 牛雪, 等. 三江平原重点富硒区 1∶5 万土地质量地球化学调查评价[R]. 中国地质调查局水文地质环境地质调查中心, 2019.
[24] He J, Pang Y J, Niu X, et al. Geochemical survey and evaluation of 1∶50000 land quality in key selenium rich areas of Sanjiang Plain[R]. CHEGS, 2019.
[25] 向云川, 任天祥, 牟绪赞, 等. 化探资料应用技术要求[M]. 北京: 地质出版社, 2010: 21-33.
[25] Xiang Y C, Ren T X, Mou X Z, et al. Technical requirements for the application of geochemical data [M]. Beijing: Geological Publishing House, 2010: 21-33.
[26] 刘英俊, 曹励明, 李兆麟, 等, 元素地球化学[M]. 北京: 科学出版社, 1984:30-40,434-441,458-470.
[26] Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry [M]. Beijing: Science Press, 1984:30-40,434-441,458-470.
[27] 安永龙, 黄勇, 张艳玲, 等, 北京房山南部地区富硒土壤生物有效性特征及来源[J]. 地质通报, 2020,39(2/3):387-398.
[27] An Y L, Huang Y, Zhang Y L, et al. Bioavailability and source analyses of Se-enriched soil in the south of Fangshan District,Beijing[J]. Geological Bulletin of China, 2020,39(2/3):387-399.
[28] 宋铁军. 冻融影响下水稻种植区包气带中硒的环境地球化学行为研究——以三江平原蛤蟆通河流域典型农业区为例[D]. 长春:吉林大学, 2019.
[28] Song T J. The effect of freeze-thaw action on environmental geochemistry behavior of selenium in the unsaturated zone of rice planting area—A case study of the typical agricultural area in Hamatong River Basin of Sanjiang Plain[D]. Changchun:Jilin University, 2019.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[3] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[4] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[5] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[6] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[7] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[8] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[9] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[10] 黄平安, 王夏青, 唐湘玲, 王玉堂, 李玮, 罗增, 吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3): 726-738.
[11] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[12] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[13] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[14] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
[15] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com