Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 37-45    DOI: 10.11720/wtyht.2021.2569
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
渤海油田渤中A构造太古宙潜山裂缝储层预测
李尧(), 张笑桀, 刘恭利, 龚敏
中海石油(中国)有限公司天津分公司 渤海石油研究院,天津 300459
The prediction of Archean buried hill fracture reservoir in BZ-A structure of the Bohai oilfield
LI Yao(), ZHANG Xiao-Jie, LIU Gong-Li, GONG Min
Bohai Oilfield Research Institute,Tianjin Branch of CNOOC Ltd.,Tianjin 300459,China
全文: PDF(9647 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

钻井揭示渤海油田渤中A构造太古宙潜山拥有巨大的天然气勘探潜力,而目标区太古宙变质岩潜山裂缝储层面临埋深大、非均质性强、横向变化快等问题,制约了该区勘探评价的顺利实施。本次研究从潜山裂缝储层的成因机理出发,分别对风化裂缝带和内幕裂缝带储层特征进行综合分析,开展了针对性的潜山裂缝储层预测技术研究。对于风化带裂缝储层,创新采用基于双参数叠前裂缝储层孔隙度预测技术,通过三维弹性参数交会分析开展裂缝储层孔隙度预测,精细描述了风化带裂缝储层发育情况。针对潜山内幕裂缝储层,在F-K域相干增强技术改善潜山内幕有效反射成像的基础上,采用基于聚类分析的边缘增强裂缝检测技术,对潜山内幕裂缝发育规律进行了综合表征。针对性裂缝储层预测技术的综合应用,有力助推了渤中A构造勘探评价,也为目标区下一步勘探评价提供了重要依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李尧
张笑桀
刘恭利
龚敏
关键词 裂缝储层太古宙潜山孔隙度预测F-K相干增强边缘检测    
Abstract

Drilling has revealed that the Archean buried hill of BZ-A has great potential for natural gas exploration.In the target area,the metamorphic rock fracture reservoir in Archean buried hill has many problems such as great buried depth,strong heterogeneity of the reservoir and rapid lateral changes,which pose challenges to the exploration.Based on the study of the genetic mechanism of fractured reservoirs in buried hill,the authors comprehensively analyzed the features of the weathered fractured zone and the inner fractured zone,and established a targeted technical system for the description of fractured reservoirs in buried hill.For the weathered zone fractured reservoir,the pre-stack fracture reservoir porosity prediction technology based on the double-parameter was innovatively used,and the fracture reservoir porosity was predicted by the 3D elastic parameter analysis,and the distribution of the fractured reservoir in the weathered zone was finely described.For the inner fractured zone,the F-K domain coherence enhancement technique was used to improve the imaging of the buried hill.The method of edge enhanced crack detection based on clustering analysis was used to comprehensively characterize the distribution of reservoir in the inner fracture zone.Through the comprehensive application of targeted geophysical techniques, the exploration evaluation of BZ-A has been strongly promoted,thus providing a strong basis for the further exploration evaluation of the target area.

Key wordsfracture reservoir    Archean buried hill    porosity prediction    F-K coherence enhancement    edge detection
收稿日期: 2019-12-05      修回日期: 2020-11-12      出版日期: 2021-02-20
ZTFLH:  P631.4  
基金资助:“十三五” 国家科技重大专项 “渤海海域勘探新领域及关键技术研究”(2016ZX05024-003)
作者简介: 李尧(1985-),男,硕士,高级工程师,主要从事地球物理方法及储层预测等方面的研究工作。Email:liyao@cnooc.com.cn
引用本文:   
李尧, 张笑桀, 刘恭利, 龚敏. 渤海油田渤中A构造太古宙潜山裂缝储层预测[J]. 物探与化探, 2021, 45(1): 37-45.
LI Yao, ZHANG Xiao-Jie, LIU Gong-Li, GONG Min. The prediction of Archean buried hill fracture reservoir in BZ-A structure of the Bohai oilfield. Geophysical and Geochemical Exploration, 2021, 45(1): 37-45.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.2569      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/37
Fig.1  1井潜山分带
Fig.2  潜山裂缝储层分带模式
Fig.3  1井和2井弹性参数交会分析
Fig.4  基于二元结构的裂缝孔隙度拟合
a—三维弹性参数交会分析;b—裂缝孔隙度曲线预测
Fig.5  叠前预测孔隙度体剖面
Fig.6  孔隙度体平面属性
Fig.7  潜山顶面古地貌
Fig.8  高陡反射无噪声模型
Fig.9  高陡反射有噪声模型
Fig.10  无噪声F-K域模型
Fig.11  有噪声F-K域模型
Fig.12  F-K域相干增强后的模型
Fig.13  原始纯波地震剖面
Fig.14  F-K域相干增强处理后剖面
Fig.15  基于聚类分析的边缘增强裂缝检测流程
Fig.16  基于聚类分析边缘增强裂缝检测效果
a—F-K增强处理后的聚类增强裂缝检测剖面;b—F-K增强处理后的地震剖面
Fig.17  太古宙潜山裂缝储层综合预测效果
a—风化裂缝带储层预测效果;b—内幕裂缝带储层预测效果;c—钻井柱状图
[1] 刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012,51(2):191-198.
[1] Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012,51(2):191-198.
[2] 张吉昌, 刘增涛, 薛大力, 等. 变质岩潜山储层地震波组特征分析与应用[J]. 断块油气田, 2014,21(4):439-443.
[2] Zhang J C, Liu Z T, Xue D L, et al. Analysis on seismic wave group features in metamorphic rock buried hill reservoir[J]. Fault-Block Oil & Gas Field, 2014,21(4):439-443.
[3] 韩雪芳, 朱筱敏, 董艳蕾. 辽东湾锦州25-1 南潜山变质岩储层四性特征研究[J]. 岩性油气藏, 2009,21(3):90-93.
[3] Han X F, Zhu X M, Dong Y L. Four properties characteristics of JZ25-1S buried hill metamorphic reservoir in Liaodong Bay[J]. Lithologic Reservoirs, 2009,21(3):90-93.
[4] 周心怀, 史浩, 孙书滨, 等. 综合地震属性分析在JZS油气田太古界变质岩潜山储层预测中的应用[J]. 石油地球物理勘探, 2006,41(5):541-545.
[4] Zhou X H, Shi H, Sun S B, et al. Application of comprehensive seismic attribute analysis in prediction of Archaean metamorphic rock buried-hill reservoir in JZS oil/gas field[J]. Oil Geophysical Prospecting, 2006,41(5):541-545.
[5] 石玉梅, 姚逢昌, 孙虎生, 等. 地震密度反演及地层孔隙度估计[J]. 地球物理学报, 2010,53(1):197-204.
doi: 10.3969/j.issn.0001-5733.2010.01.022
[5] Shi Y M, Yao F C, Sun H S, et al. Density invesion and porosity estimation[J]. Chinese Journal of Geophysics, 2010,53(1):197-204.
[6] 孙炜, 王彦春, 李梅, 等. 利用叠前地震数据预测火山岩储层裂缝[J]. 物探与化探, 2010,34(2):229-232.
[6] Sun W, Wang Y C, Li M, et al. The detection of fractures in the volcanic reservoir with pre-stack seismic data[J]. Geophysical and Geochemical Exploration, 2010,34(2):229-232.
[7] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012,36(6):941-946.
[7] Huang H D, Wang J B, Guo F. The application of sensitive parameters analysis to fluid identification based on pre-stack inversion[J]. Geophysical and Geochemical Exploration, 2012,36(6):941-946.
[8] 印兴耀, 曹丹评, 王保丽, 等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探, 2014,49(1):22-34,46.
[8] Yin X Y, Cao D P, Wang B L, et al. Research progress of fluid discrimination with pre-stack seismic inversion[J]. Oil Geophysical Prospecting, 2014,49(1):22-34,46.
[9] 李尧. 基线差密度校正法的应用——以蓬莱9-1油田叠前反演处理为例[J]. 物探与化探, 2015,39(5):1020-1026.
doi: 10.11720/wtyht.2015.5.23
[9] Li Y. The application of density baseline differences correction — Taking the pre-stack inversion in the PL9-1 oilfield as an example[J]. Geophysical and Geochemical Exploration, 2015,39(5):1020-1026.
[10] 潘新朋, 张广智, 印兴耀. 岩石物理驱动的储层裂缝参数与物性参数概率地震反演方法[J]. 地球物理学报, 2018,61(2):683-696.
[10] Pan X P, Zhang G Z, Yin X Y. Probabilistic seismic inversion for reservoir fracture and petrophysical parameters driven by rock-physics models[J]. Chinese Journal Geophysics, 2018,61(2):683-696.
[11] 傅旦丹, 林小竹, 李玉艳, 等. 三维地震勘探中强声波干扰的压制[J]. 石油物探, 2007,46(5):463-466.
[11] Fu D D, Lin X Z, Li Y Y, et al. Suppression of strong acoustic interference in 3D seismic data[J]. Geophysical Prospecting for Petroleum, 2007,46(5):463-466.
[12] 闫立志, 景新义, 李刚, 等. F-K滤波在噪音减去法中的作用[J]. 海洋地质动态, 2006,22(10):28-32.
[12] Yan L Z, Jing X Y, Li G, et al. The function of F-K filter in subtraction noise attenuation method[J]. Marine Geology Letters, 2006,22(10):28-32.
[13] 李宇, 韩立国, 叶林, 等. 基于F-K域和Curvelet-中值滤波联合去噪的混采数据分离方法[J]. 世界地质, 2017,36(2):609-615.
[13] Li Y, Han L G, Ye L, et al. Blended acquisition data separation method based on F-K domain and Curvelet-median filter joint denoising[J]. Global Geology, 2017,36(2):609-615.
[14] Marfurt K J. Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006,71(4):29-40.
[15] Chopra S, Marfurt K J. Integration of coherence and volumetric curvature images[J]. The Leading Edge, 2010,29(9):1092-1107.
doi: 10.1190/1.3485770
[16] 王连山, 朱庆忠, 董建海, 等. 三维多尺度边缘检测技术在古潜山裂缝性储层预测中的应用[J]. 特种油气藏, 2006,13(3):15-21.
[16] Wang L S, Zhu Q Z, Dong J H, et al. Application of 3D multiple scale marginal detection technique in buried hill fractured reservoir prediction[J]. Special Oil and Gas Reservoirs, 2006,13(3):15-21.
[17] 陈波, 孙德胜, 朱筱敏, 等. 利用地震数据分频相干技术检测火山岩裂缝[J]. 石油地球物理勘探, 2011,46(5):610-613.
[17] Chen B, Sun D S, Zhu X M, et al. Fracture detection in volcanic rocks using discreet frequency coherency cubes on full azimuth seismic data[J]. Oil Geophysical Prospecting, 2011,46(5):610-613.
[18] 谢风猛. 古潜山裂缝储层预测新方法[J]. 物探与化探, 2010,34(2):233-236.
[18] Xie F M. The application of geometrical properties to predicting fracture type reservoirs[J]. Geophysical and Geochemical Exploration, 2010,34(2):233-236.
[19] 杨平, 李海银, 胡蕾, 等. 提高裂缝预测精度的解释性处理技术及其应用[J]. 石油物探, 2015,54(6):681-689.
[19] Yang P, Li H Y, Hu L, et al. Interpretative processing techniques and their applications in improving fracture prediction accuracy[J]. Geophysical Prospecting for Petroleum, 2015,54(6):681-689.
[20] 尹川, 杜向东, 赵汝敏, 等. 小波分频倾角相干在复杂断裂解释中的应用[J]. 石油地球物理勘探, 2015,50(2):346-350.
[20] Yin C, Du X D, Zhao R M, et al. Dip-steering similarity based on wavelet decomposition in complex fault interpretation[J]. Oil Geophysical Prospecting, 2015,50(2):346-350.
[21] 申有义, 田忠斌, 王建青, 等. 基于多尺度边缘检测技术的煤系灰岩裂缝分布预测[J]. 物探与化探, 2018,42(4):725-730.
[21] Shen Y Y, Tian Z B, Wang J Q, et al. Fracture prediction of coal seam limestone based on multi-scale boundary detection method[J]. Geophysical and Geochemical Exploration, 2018,42(4):725-730.
[1] 申有义, 田忠斌, 王建青, 杨晓东. 基于多尺度边缘检测技术的煤系灰岩裂缝分布预测[J]. 物探与化探, 2018, 42(4): 725-730.
[2] 李尧. 基线差密度校正法的应用——以蓬莱9-1油田叠前反演处理为例[J]. 物探与化探, 2015, 39(5): 1020-1026.
[3] 陈超, 魏彪, 梁婷, 何鹏, 冯鹏, 王静. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013, 37(3): 500-507.
[4] 朱炼, 李才明, 姚晓峰, 谢江涛. 航磁对南冈底斯东段大型斑岩型矿床的预测[J]. 物探与化探, 2013, 37(1): 53-58.
[5] 乐友喜, 袁青, 韩宏伟, 刘士忠. 时深效应指数在超压储层孔隙度预测中的应用[J]. 物探与化探, 2012, 36(5): 793-797.
[6] 罗德江, 汪兴旺, 刘伟. 基于局部投影和边缘检测的自动分层模型[J]. 物探与化探, 2009, 33(1): 99-101.
[7] 高美娟, 田景文, 张淑华. 利用人工神经网络方法检测地震剖面同相轴[J]. 物探与化探, 2000, 24(5): 353-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com