Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1394-1401    DOI: 10.11720/wtyht.2021.1316
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用
韦红(), 白清云, 张鹏志, 甄宗玉
中海石油(中国)有限公司 天津分公司渤海石油研究院,天津 300450
The application of seismic oil-water identification method to Guantao Formation of Bohai S oil field
WEI Hong(), BAI Qing-Yun, ZHANG Peng-Zhi, ZHEN Zong-Yu
China National Offshore Oil Corporation(CNOOC) Limited Tianjin Branch,Tianjin 300450,China
全文: PDF(4353 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

受限于地震资料分辨率较低,渤海S油田馆陶组的复合叠置砂体中的单砂体顶底识别较困难;且在时—空域里,地震反射特征相似的砂层组出现截然不同的流体类型,油水关系非常复杂。为此,本文首先开展了反褶积广义S变换的时频分析,参照已钻井的地震反射特征,优选低频、高频属性体;其次进行储层顶、底的准确识别;利用双相介质理论进行油、水的频谱特征差异分析。分析表明,油、水层在频率域的地震响应有较明显的特征,频率类的属性对地震波的高频衰减较敏感;通过优选该油田主力油层的低频、高频属性体数据及储层顶、底的频谱衰减差异的平面数据,共同构建一个新的流体识别因子,进行油水识别,并取得较好的效果,助力剩余10余口开发井的布署和实施。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦红
白清云
张鹏志
甄宗玉
关键词 油水识别频谱地震响应双相介质黏滞弥散油气地质工程    
Abstract

Restricted by the low resolution of seismic data,the identification of the top and bottom of a single sand body is difficult in the composite superposed sand bodies of the Guantao Formation in the Bohai S oil field.Moreover,in the time-space domain, sandstones with similar seismic reflection characteristics have very different fluid types,and the oil-water relationship is very complicated. In view of such a situation,based on the two-phase medium theory and the theory of viscous dispersion wave equation,the authors first carried out the time-frequency analysis of the generalized S transform,and selected the low-frequency and high-frequency attribute bodies with reference to the seismic reflection characteristics of the drilling well.Secondly,the top and bottom of the reservoir were accurately identified.Then the analysis of the difference of the spectrum characteristics of oil and water was conducted.The result shows that the seismic responses of the oil and water layers in the frequency domain have obvious characteristics,and the frequency-type attributes are more sensitive to the high-frequency attenuation of seismic waves.By optimizing the low-frequency and high-frequency attribute volume data of the main oil layer of the oil field and the plane data of the spectral attenuation difference between the top and bottom of the reservoir,a new fluid identification factor was jointly constructed to identify oil and water and achieved better results to help the remaining deployment and implementation of more than 10 development wells.

Key wordsoil-water identification    frequency spectrum    seismic response    two-phase medium    viscous dispersion    oil-gas geological engineering
收稿日期: 2020-10-21      修回日期: 2021-06-17      出版日期: 2021-12-20
ZTFLH:  P631.4  
基金资助:“十三五”国家科技重大专项“渤海油田加密调整及提高采收率油藏工程技术示范”项目(2016ZX05058-001)
作者简介: 韦红(1984-),女,2013年毕业于西南石油大学,博士,主要从事开发地震处理解释工作。Email: weihong@cnooc.com.cn
引用本文:   
韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
WEI Hong, BAI Qing-Yun, ZHANG Peng-Zhi, ZHEN Zong-Yu. The application of seismic oil-water identification method to Guantao Formation of Bohai S oil field. Geophysical and Geochemical Exploration, 2021, 45(6): 1394-1401.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1316      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1394
Fig.1  广义S变换时频谱(a)和反褶积广义S变换时频谱(b)
Fig.2  透镜体储层模型(a)及含油透镜体(b)、含水透镜体(c)
Fig.3  常规的连井地震剖面
Fig.4  过I38P1-10井的地震剖面
Fig.5  主力油层的平面振幅属性
Fig.6  基于流体识别因子过I38P1-10井地震剖面
Fig.7  基于流体识别因子平面属性
Fig.8  常规地震剖面(a)与基于流体识别因子的过11-J56H井的地震剖面(b)
Fig.9  常规振幅平面属性(a)与基于流体因子的平面属性(b)
[1] Dilay A, Eastwood J. Spectral analysis applied to seismic monitoring of thermal recovery[J]. The Leading Edge, 1995, 14(11):1117-1122.
doi: 10.1190/1.1437081
[2] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum:the S transform[J]. IEEE Trans Signal Process, 1996, 44(4):998-1001.
doi: 10.1109/78.492555
[3] Goloshubin G M, Korneev V A. Seismic low-frequency effects from fluid-saturated reservoir[J]. SEG Technical Program Expanded Abstracts, 2000, 19:1671-1674.
[4] Goloshubin G M, Korneev V A, Vingalov V M. Seismic low-frequency effects from oil-saturated reservoir zone[J]. SEG Technical Program Expanded Abstracts, 2002, 21:1813-1816.
[5] Korneev V A, Goloshubin G M, Daley T M, et al. Seismic low-frequency effects in monitoring fluid-saturated reservoirs[J]. Geophysics, 2004, 69(2):522-532.
doi: 10.1190/1.1707072
[6] Goloshubin G, VanSchuyver C, Korneev V, et al. Reservoir imaging using low frequencies of seismic reflections[J]. The Leading Edge, 2006, 5:527-531.
[7] 卢明辉, 巴晶, 杨慧珠, 等. 双相介质分界面上弹性波的反射与透射[J]. 地球物理学进展, 2007, 22(5):1439-1445.
[7] Lu M H, Ba J, Yang H Z, et al. Reflection and transmission of elastic waves from a boundary of two-phase media[J]. Progess in Geophysics, 2007, 22(5):1439-1445.
[8] He Z H, Xiong X J, Bian L E. Numerical simulation of seismic low-frequency shadows and its application[J]. Applied Geophysics, 2008, 5(4):301-306.
doi: 10.1007/s11770-008-0040-4
[9] 孙万元, 张会星, 孙杨, 等. 地震波衰减和频散属性的提取及其在油气检测中的应用[J]. 中国海洋大学学报:自然科学版, 2013, 43(10):83-87.
[9] Sun W Y, Zhang H X, Sun Y, et al. Apply s-transform to extract the attenuation and dispersion attributes of the seismic wave to detect oil and gas[J]. Periodical of Ocean University of China:Science & Technology Edition, 2013, 43(10):83-87.
[10] 胡军辉, 文晓涛, 许艳秋, 等. 利用黏滞—弥散波动方程理论进行油水识别[J]. 石油地球物理勘探, 2016, 51(3):556-564.
[10] Hu J H, Wen X T, Xu Y Q, et al. Oil-water recognition based on diffusive-viscous wave equation[J]. OGP, 2016, 51(3):556-564.
[11] 张广智, 郑静静, 印兴耀, 等. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4):505-510.
[11] Zhang G Z, Zheng J J, Yin X Y, et al. The technique for extracting angle fluid factor based on curvelet transform[J]. Geophysical and Geochemical Exploration, 2011, 35(4):505-510.
[12] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6):941-946.
[12] Huang H D, Wang J B, Guo F. The application of sensitive parameters analysis to fluid identification based on pre-stack inversion[J]. Geophysical and Geochemical Exploration, 2012, 36(6):941-946.
[13] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.
[13] Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
[14] 李相文, 刘永雷, 但光箭, 等. 方位AVO 技术在碳酸盐岩缝洞型储层含流体预测中的研究与应用[J]. 物探与化探, 2016, 40(1):129-134.
[14] Li X W, Liu Y L, Dan G J, et al. The study and application of azimuthal AVO analysis technique for fluid-containing prediction of fractured-vuggy carbonate rocks reservoir[J]. Geophysical and Geochemical Exploration, 2016, 40(1):129-134.
[15] 李灿, 归平军. 纵横波速度比在东胜气田致密低渗储层流体识别中的应用[J]. 物探与化探, 2019, 43(3):536-542.
[15] Li C, Gui P J. VP/VS applied to fluid identification of tight sandstone reservoir of Dongsheng gas field[J]. Geophysical and Geochemical Exploration, 2019, 43(3):536-542.
[16] Lu W K, Li F Y. Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram[J]. Geophysics, 2013, 78(2):V43-V51.
doi: 10.1190/geo2012-0125.1
[17] 朱恒, 文晓涛, 金炜龙, 等. 基于反褶积短时傅立叶变换的油气检测[J]. 地球物理学进展, 2015, 30(5):2354-2359.
[17] Zhu H, Wen X T, Jin W L, et al. Oiland gas detection based on deconvolutive short-time Fourier transform[J]. Progress in Geophysics, 2015, 30(5):2354-2359.
[18] 张懿疆, 文晓涛, 刘婷, 等. 基于反褶积广义S变换的地震频谱成像方法研究[J]. 科学技术与工程, 2017, 17(15):12-18.
[18] Zhang Y J, Wen X T, Liu T, et al. Seismic spectral imaging method based on deconvolutive generalized S-transform[J]. Science Technology and Engineering, 2017, 17(15):12-18.
[19] 张会星, 何兵寿, 姜效典, 等. 利用地震波在双相介质中的衰减特性检测油气[J]. 石油地球物理勘探, 2010, 45(3):343-349.
[19] Zhang H X, He B S, Jiang X D, et al. Utilizing attenuation characteristic of seismic wave in dual-phase medium to detect oil and gas[J]. Oil Geophysical Prospecting, 2010, 45(3):343-349.
[20] Biot M A. Theory of porpagation of elastic waves in a fluid-saturated porous solid:Low-frequency range[J]. Acoust. Soc. Amer., 1956, 28(2):168-178.
doi: 10.1121/1.1908239
[21] Amos Nur. 双相介质中波的传播[M].许云译. 北京: 石油工业出版社, 1986.
[21] Amos Nur. Wave propagation in the two-phase medium[M].Xu Yun Trans. Beijing: Petroleum Industry Press, 1986.
[22] 严海滔, 黄饶, 周怀来, 等. 同步挤压广义S 变换在南海油气识别中的应用[J]. 地球物理学进展, 2019, 34(3):1229-1235.
[22] Yan H T, Huang R, Zhou H L, et al. Application of Nanhai oil and gas identification based on synchrosqueezing generalized S transform[J]. Progress in Geophysics, 2019, 34(3):1229-1235.
[1] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[2] 王飞飞, 陈儒军, 李生杰, 申瑞杰, 殷昊, 刘峰海, 彭鑫. 宽带岩矿石标本频谱激电测试仪采集系统研制[J]. 物探与化探, 2022, 46(6): 1454-1462.
[3] 侯胜蓝, 陈儒军, 王子辉, 刘志同, 刘瑨. 基于NB-IoT的宽频带岩矿石标本频谱激电响应测试仪测控软件研发[J]. 物探与化探, 2022, 46(6): 1463-1469.
[4] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[5] 石加玉, 郭鹏, 李勇. 频谱激电测量仪器关键技术研究及实现[J]. 物探与化探, 2021, 45(6): 1475-1481.
[6] 王东辉, 吴晓川. 频谱差异烃类检测新方法在东胜气田的应用[J]. 物探与化探, 2020, 44(4): 709-718.
[7] 肖占山, 赵云生, 赵宝成, 李强, 胡海涛, 邵琨, 姚春明. 基于岩石电性参数频散特性的储层参数评价方法[J]. 物探与化探, 2019, 43(5): 1105-1110.
[8] 许璐. 地震数据炮域规则化方法研究及应用[J]. 物探与化探, 2018, 42(6): 1245-1252.
[9] 张强, 王鑫, 乐幸福, 张建新. 正演模拟技术在白云岩薄储层预测研究中的应用[J]. 物探与化探, 2018, 42(5): 1042-1048.
[10] 吴楠, 吴舰, 吴志坚. 探地雷达信号消噪中的时频谱分解重排算法[J]. 物探与化探, 2018, 42(1): 220-224.
[11] 王建青, 杨晓东, 田忠斌, 申有义. 基于地震频谱属性的煤层厚度预测方法[J]. 物探与化探, 2017, 41(2): 364-368.
[12] 高维, 舒晴, 屈进红, 周坚鑫, 乔阳, 尹航. 航空物探飞机典型飞行状态下振动特性研究[J]. 物探与化探, 2016, 40(1): 93-99.
[13] 舒晴, 张文志, 周坚鑫, 尹航, 高维. 重力梯度张量分量转换处理误差研究[J]. 物探与化探, 2016, 40(1): 111-116.
[14] 林朋, 卢勇旭. 传统和旋转交错网格有限差分在双相介质中的模拟对比[J]. 物探与化探, 2016, 40(1): 203-208.
[15] 李世杰, 师素珍. 基于射线追踪方法的煤层地震响应特征[J]. 物探与化探, 2016, 40(1): 209-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com