Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 961-969    DOI: 10.11720/wtyht.2021.1175
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
油气检测多技术联合在B油田的应用研究
马良涛1, 范廷恩1, 许学良2, 董建华1, 蔡文涛1
1.中海油研究总院有限责任公司,北京 100028
2.中国石油集团测井有限公司 青海分公司,青海 茫崖 816400
The application of multi-seismic hydrocarbon detection technology to gas identification in B oilfield
MA Liang-Tao1, FAN Ting-En1, XU Xue-Liang2, DONG Jian-Hua1, CAI Wen-Tao1
1. CNOOC Research Institute Co.,Ltd.,Beijing 100028,China
2. Qinghai Branch of CNPC Logging Co.,Ltd.,Mangya 816400,China
全文: PDF(8835 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

B油气田处于开发初期,钻井少,目标区内含气储层边界认识不清,直接影响油田储量准确计算及后期开发井网部署和优化。为准确落实油田含气储层边界,利用分频能量衰减技术、AVO分析技术以及叠前弹性参数反演等多技术结合,并与已钻井相互印证,开展目标区含气储层地震响应特征分析,进而准确预测目标区含气储层边界。分析表明,受地震波衰减特性的影响,目标区含气储层具有低频能量增加、高频能量减弱的“低频共振、高频衰减”特征;通过已钻井AVO正演分析可以判定目标区含气储层属于第Ⅲ类AVO异常,其地震正振幅随偏移距的增大而增强;岩石物理参数中,拉梅系数、泊松比、纵横波速度比为含气砂岩敏感参数,且泊松比区分含气砂岩的效果最好,可较好地反映含气储层平面分布。分频能量衰减、AVO分析及叠前弹性参数反演能较好地检测含气储层,多技术结合相互印证有助于提高含气储层边界预测精度,为目标区储量准确计算和开发井网部署优化提供支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马良涛
范廷恩
许学良
董建华
蔡文涛
关键词 油气检测含气储层分频能量衰减AVO分析叠前弹性参数反演    
Abstract

The target field is in the early stage of development with few drilling wells.Unclear boundary of gas reservoir in the target area affects accurate calculation of oil field reserves and well pattern deployment for later development.To solve this problem,the authors analyzed the seismic response characteristics of gas-bearing reservoirs in the target area by spectral decomposition energy attenuation,AVO analysis and pre-stack elastic parameter inversion technology,and then predicted the boundary of gas-bearing reservoirs in the target area.The result shows that the gas-bearing reservoir in the target area is characterized by "low frequency resonant and high frequency attenuated".That means the increase of low frequency energy and the decrease of high frequency energy due to the attenuation of seismic wave.Through AVO forward analysis of drilled well,it can be determined that the gas-bearing reservoir in the target area belongs to class III AVO anomaly,and its seismic positive amplitude increases with the increase of offset distance.Among the petrophysical parameters,Lame's coefficient,Poisson's ratio and P-S wave velocity ratio are sensitive to gas-bearing sandstone.Besides,Poisson's ratio is the best one for distinguishing gas-bearing sandstone and can reveal the gas-bearing reservoir and predict its plane distribution.Applying spectral decomposition energy attenuation,AVO analysis and pre-stack elastic parameter inversion technology,the authors detected gas-bearing reservoirs. With the application of multi-technology,the prediction precision of gas-bearing reservoir boundary can be improved and this would provide support for accurate calculation of reserves and development of well pattern deployment in the target area.

Key wordshydrocarbon-bearing detection    gas-bearing reservoirs    spectral decomposition energy attenuation    AVO analysis    prestack elastic parameter inversion
收稿日期: 2020-04-24      修回日期: 2021-03-03      出版日期: 2021-08-20
ZTFLH:  P631  
基金资助:国家油气重大专项项目“海外重点油气田开发钻采关键技术”(2017ZX05032-004)
作者简介: 马良涛(1984-),男,博士,高级工程师,主要从事油藏地球物理相关工作。
引用本文:   
马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
MA Liang-Tao, FAN Ting-En, XU Xue-Liang, DONG Jian-Hua, CAI Wen-Tao. The application of multi-seismic hydrocarbon detection technology to gas identification in B oilfield. Geophysical and Geochemical Exploration, 2021, 45(4): 961-969.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1175      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/961
Fig.1  目标区H30构造特征
Fig.2  Well-2井与Well-3井钻遇储层流体性质
Fig.3  不同流体储层段地震频谱特征
Fig.4  Well-1-Well-2-Well-3过井分频能量剖面
a—低频能量剖面;b—高频能量剖面;c—衰减能量剖面
Fig.5  Well-3井储层AVO分析
Fig.6  H30层部分角度叠加地震数据反射特征
a—近道地震数据;b—中道地震数据;c—远道地震数据
Fig.7  H30层部分角度叠加地震数据均方根振幅变化特征
a—基于近道地震数据;b—基于中道地震数据;c—基于远道地震数据
Fig.8  Well-3井不同岩性弹性参数交会
Fig.9  过Well-3 和Well-4泊松比反演连井剖面
Fig.10  H30叠前反演泊松比平面特征
Fig.11  目标区含气储层平面展布
[1] 张玉华. 基于岩石物理的AVO正演模拟研究[M]. 北京:中国石油大学, 2007.
[1] Zhang Y H. AVO forward modeling based on rock physics[M]. Beijing:China University of Petroleum, 2007.
[2] Rutherford S R, Willians R H. Amplitude versus offset variations in gas sands[J]. Geophysics, 1989,54(4):680-688.
[3] 骆璞, 王显, 姜传芳. AVO属性技术在含气砂岩储层预测中的应用[J]. 复杂油气藏, 2014,7(4):32-34.
[3] Luo P, Wang X, Jiang C F. Application of AVO attribute technology in the prediction of gas-bearing sandstone[J]. Complex Hydrocarbon Reservoirs, 2014,7(4):32-34.
[4] 于常青, 邵建中, 王香文, 等. 鄂尔多斯盆地定北地区致密砂岩储层AVO研究及应用[J]. 地球物理学进展, 2010,25(4):1273-1279.
[4] Yu C Q, Shao J Z, Wang X W, et al. The application of AVO technique to compact sandstone reservoir in the Dingbei area of Ordos Basin[J]. Progress in Geophysics, 2010,25(4):1273-1279.
[5] 刘东琴, 李晓恒, 汪关妹, 等. AVO技术在苏75区块含气性检测中的应用[J]. 石油地球物理勘探, 2013,48(s1):109-114.
[5] Liu D Q, Li X H, Wang G M, et al. Hydrocarbon detection with AVO in Block Su-75[J]. OGP, 2013,48(s1):109-114.
[6] 刘洪林, 朱秋影. 基于叠前深度偏移的AVO反演及解释[J]. 地球物理学进展, 2007,22(3):905-912.
[6] Liu H L, Zhu Q Y. AVO inversion and interpretation based on prestack depth migration[J]. Progress in Geophysics, 2007,22(3):905-912.
[7] 明君, 王辉, 林桂康. 扩展AVO技术在渤海油田的应用[J]. 地球物理学进展, 2015,30(6):2736-2740.
[7] Ming J, Wang H, Lin G K. Application of extended AVO analysis technology in Bohai Oilfield[J]. Progress in Geophysics, 2015,30(6):2736-2740.
[8] 鲜强, 蔡志东, 王祖君, 等. AVO分析技术在塔中碳酸盐岩油气检测中的应用[J]. 物探化探计算技术, 2017,39(2):260-265.
[8] Xian Q, Cai Z D, Wang Z J, et al. Application of AVO in hydrocarbon detection at Tazhong area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017,39(2):260-265.
[9] 张卫卫, 何敏, 朱明, 等. 应用AVO技术识别深水区非亮点气藏[J]. 石油地球物理勘探, 2015,50(1):123-128.
[9] Zhang W W, He M, Zhu M, et al. Identification of Non-bright-spot gas reservoir with AVO in deep water area[J]. OGP, 2015,50(1):123-128.
[10] 李维新. 岩石物理弹性参数规律研究[J]. 地球物理学进展, 2007,22(5):1380-1385.
[10] Li W X. The study on the relationships of elastic properties of rock physics[J]. Progress in Geophysics, 2007,22(5):1380-1385.
[11] 秦童, 高伟, 刘恭利, 等. 振幅衰减梯度属性在油气检测中的应用[J]. 东北石油大学学报, 2017,41(6):66-73.
[11] Qin T, Gao W, Liu G L, et al. Application of amplitude attenuation gradient attribute to hydrocarbon detection[J]. Journal of Northeast Petroleum University, 2017,41(6):66-73.
[12] 张鹏志, 陈华靖, 闫涛, 等. 地震低频异常属性在渤海Q油田油气检测中的应用研究[J]. 物探化探计算技术, 2017,39(6):816-824.
[12] Zhang P Z, Chen H J, Yan T, et al. Application of low frequency abnormal seismic attribute analysis for hydrocarbon identification in Bohai Q oilfield[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017,39(6):816-824.
[13] 郑江峰, 彭刚, 孙佳林, 等. 基于90°相移的振幅和频率属性融合法油气检测[J]. 石油物探, 2019,58(1):130-138.
[13] Zheng J F, Peng G, Sun J L, et al. Fusing amplitude and frequency attributes for hydrocarbon detection using 90°phase shift data[J]. Geophysical Prospecting for Petroleum, 2019,58(1):130-138.
[14] 施行觉, 徐果明, 靳平, 等. 岩石的含水饱和度对纵横波速度及衰减影响的试验研究[J]. 地球物理学报, 1995,38(s1):281-287.
[14] Shi X J, Xu G M, Jin P, et al. The laboratory study of influence of water saturation on rock's velocity and attenuation[J]. Chinese Journal of Geophysics, 1995,38(s1):281-287.
[15] Ebrom D. The low-frequency gas shadow on seismic sections[J]. The Leading Edge, 2004,23(8):772-773.
[16] 王波, 夏同星, 明君, 等. 油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用[J]. 物探与化探, 2018,42(5):1026-1032.
[16] Wang B, Xia T X, Ming J, et al. Peak energy sum in hydrocarbon sensitive frequency range and its application to the Bohai Oilfield[J]. Geophysical and Geochemical Exploration, 2018,42(5):1026-1032.
[17] 张军林, 田世澄, 郑多明, 等. 碳酸盐岩储层流体综合预测[J]. 石油地球物理勘探, 2013,48(s1):89-94.
[17] Zhang J L, Tian S C, Zheng D M, et al. Intergrated fluid prediction for carbonate reservoir[J]. OGP, 2013,48(s1):89-94.
[18] 张秀丽, 张桂明, 杨树合, 等. 地震油气检测技术在大港油田浅层气识别中的应用[J]. 天然气地球科学, 2013,24(4):815-820.
[18] Zhang X L, Zhang G M, Yang S H, et al. Seismic hydrocarbon detection technique and its application in indentification of shallow gas in Dagang Oilfield[J]. Natural Gas Geoscience, 2013,24(4):815-820.
[19] 李宏伟, 王九拴, 邵林海, 等. 油气检测技术在三湖浅层生物气勘探中的应用[J]. 石油地球物理勘探, 2013,48(5):770-775.
[19] Li H W, Wang J S, Shao L H, et al. Hydrocarbon detection in biogas exploration in San-hu shallow[J]. OGP, 2013,48(5):770-775.
[20] 赵玉华, 李坤白, 张杰, 等. 鄂尔多斯盆地中部下古生界白云岩含气性地震检测[J]. 地质科技情报, 2015,34(3):191-197.
[20] Zhao Y H, Li K B, Zhang J, et al. Seismic detection for gas-bearing lower Palaeozoic dolomite,the middle of the Ordos Basin[J]. Geological Science and Technology Information, 2015,34(3):191-197.
[21] 洪忠, 刘化清, 张猛刚. 辫状河含气砂岩储层预测[J]. 西南石油大学学报:自然科学版, 2014,36(6):39-46.
[21] Hong Z, Liu H Q, Zhang M G. Gas-bearing reservoir prediction of Braided River[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2014,36(6):39-46.
[22] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Low-frequency range[J]. Acoust. Soc. Amer., 1956,28(2):168-178.
[23] 汪佳蓓, 黄捍东, 郭飞. 基于双相介质的地震波衰减特性油气检测方法[J]. 东北石油大学学报, 2016,40(2):19-26.
[23] Wang J B, Huang H D, Guo F. Hydrocarbon detection based on the theory of seismic wave attenuation in two-phase medium[J]. Journal of Northeast Petroleum University, 2016,40(2):19-26.
[24] 张波, 王真理, 周水生, 等. 谱分解在含气检测中的应用[J]. 地球物理学进展, 2010,25(4):1360-1364.
[24] Zhang B, Wang Z L, Zhou S S, et al. Application of spectral decomposition to gas detection[J]. Progress in Geophysics, 2010,25(4):1360-1364.
[25] 张会星, 何兵寿, 姜效典, 等. 利用地震波在双相介质中的衰减特性检测油气[J]. 石油地球物理勘探, 2010,45(3):343-349.
[25] Zhang H X, He B S, Jiang X D, et al. Utilizing attenuation characteristic of seismic wave in dual-phase medium to detect oil and gas[J]. OGP, 2010,45(3):343-349.
[26] 郭华军, 黄革萍, 徐洋. 油气检测技术在莫索地区的应用[J]. 物探与化探, 2013,37(4):264-268.
[26] Guo H J, Huang G P, Xu Y. The application of hydrocarbon detection technology to Mosuo-Wan firld[J]. Geophsical and Geochemical Exploration, 2013,37(4):264-268.
[27] Aki K I, Richards P G. Quantitative seismology[M]. University Science Books, 1980.
[28] Shuey R T. A simplification of the Zoeppritz equation[J]. Geophysics, 1980,50(4):609-614.
[29] 解吉高, 刘志斌, 张益明, 等. 利用泊松阻抗进行油气检测[J]. 石油地球物理勘探, 2013,48(2):273-278.
[29] Xie J G, Liu Z B, Zhang Y M, et al. Hydrocarbon detection by Poisson impedance[J]. OGP, 2013,48(2):273-278.
[30] 李尧, 李英, 谭辉煌. 地震岩石物理在渤海PL油田流体检测中的应用[J]. 地球物理学进展, 2018,33(1):372-378.
[30] Li Y, Li Y, Tan H H. Application of seismic rock physics for fluid detection in Bohai PL oilfield[J]. Progress in Geophysics, 2018,33(1):372-378.
[31] 姜仁, 曾庆才, 黄家强, 等. 岩石物理分析在叠前储层预测中的应用[J]. 石油地球物理勘探, 2014,49(2):322-328.
[31] Jiang R, Zeng Q C, Huang J Q, et al. Application of rock physics analysis in pre-stack seismic reservoir prediction[J]. OGP, 2014,49(2):322-328.
[32] 喻岳钰, 杨长春, 王彦飞, 等. 叠前弹性阻抗反演及其在含气储层预测中的应用[J]. 地球物理学进展, 2009,24(2):574-580.
[32] Yu Y Y, Yang C C, Wang Y F, et al. Application of pre-stack seismic elastic impedance inversion to gas reservoir[J]. Progress in Geophysics, 2009,24(2):574-580.
[33] 贾跃玮, 王丹, 魏水建, 等. 金山气田致密砂岩储层含气性叠前地震预测方法研究[J]. 物探化探计算技术, 2017,39(5):626-631.
[33] Jia Y W, Wang D, Wei S J, et al. Study of pre-stack seismic prediction on tight-sand reservoir gas-bearing of Jinshan gas field[J]. Computing Techniques for Geophysical and Geochemical Explortion, 2017,39(5):626-631.
[34] 姜雨, 涂齐催. 利用岩石物理分析及叠前反演技术解决致密砂岩气储层预测问题——以西湖凹陷A区块为例[J]. 海洋地质前沿, 2015,31(11):36-42.
[34] Jiang Y, Tu Q C. The reservoir prediction of tight gas sandstone by using petrophysical analysis and pre-stack inversion technology[J]. Marine Geology Frontiers, 2015,31(11):36-42.
[35] 李红梅. 泊松比参数直接反演方法在储层油气检测中的应用[J]. 地球物理学进展, 2013,28(6):3049-3055.
[35] Li H M. Application of poisson's ratio direct inversion to reservoir hydrocarbon detection[J]. Progress in Geophysics, 2013,28(6):3049-3055.
[36] 印兴耀, 曹丹平, 王保丽, 等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探, 2014,49(1):22-34.
[36] Yin X Y, Cao D P, Wang B L, et al. Research progress of fluid discrimination with pre-stack seismic inversion[J]. OGP, 2014,49(1):22-34.
[37] 杜巍, 马庆林, 张培园, 等. 叠后反演和油气检测技术在福山凹陷岩性油气藏预测中的应用[J]. 石油地球物理勘探, 2017,52(s1):110-116.
[37] Du W, Ma Q L, Zhang P Y, et al. Poststack seismic inversion and hydrocarbon detection in lithologic reservoir prediction in Fushan Sag[J]. OGP, 2017,52(s1):110-116.
[38] 苏建龙, 屈大鹏, 陈超, 等. 叠前地震反演方法对比分析——焦石坝页岩气藏勘探实例[J]. 石油地球物理勘探, 2016,51(3):581-588.
[38] Su J L, Qu D P, Chen C, et al. Application of pre-stack inversion technique for shale gas in Jiaoshiba gas field[J]. OGP, 2016,51(3):581-588.
[39] 王开燕, 林雨佳, 黄明威, 等. 基于叠前弹性反演的含气储层预测技术[J]. 地球物理学进展, 2016,31(5):2150-2159.
[39] Wang K Y, Lin Y J, Huang M W, et al. Gas-bearing prediction of reservoirs based on pre-stack elastic inversion[J]. Progress in Geophysics, 2016,31(5):2150-2159.
[40] 杨士明, 周丽梅, 潘晓慧. 叠前弹性参数反演技术在识别白云岩储层中的应用[J]. 石油天然气学报, 2012,34(5):69-73.
[40] Yang S M, Zhou L M, Pan X H. Application of pre-stack elastic parameters inversion technology in identifying the Dolomite reservoirs[J]. Journal of Oil and Gas Technology, 2012,34(5):69-73.
[1] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[2] 王波, 夏同星, 明君, 郭帅. 油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用[J]. 物探与化探, 2018, 42(5): 1026-1032.
[3] 李相文, 刘永雷, 但光箭, 安海亭, 张建伟, 赵婧, 李梁, 李树珍. 方位AVO技术在碳酸盐岩缝洞型储层含流体预测中的研究与应用[J]. 物探与化探, 2016, 40(1): 129-134.
[4] 张莉, 王笑雪, 韦振权, 帅庆伟, 钱星. 南海北部陆坡区多次波组合压制技术[J]. 物探与化探, 2015, 39(5): 985-993.
[5] 郭华军, 黄革萍, 徐洋. 油气检测技术在莫索湾地区的应用[J]. 物探与化探, 2013, 37(2): 264-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com