Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1103-1115    DOI: 10.11720/wtyht.2020.1554
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
临沧地区富铀花岗岩体地球化学特征及其地质意义
田建民1(), 徐争启1,2(), 尹明辉1, 李涛1, 孙康3
1.成都理工大学 地球科学学院,四川 成都 610059
2.地学核技术四川省重点实验室,四川 成都 610059
3.机械工业第六设计研究院有限公司,河南 郑州 450000
Geochemical characteristics and geological significance of uranium-rich granites in Lincang area
TIAN Jian-Min1(), XU Zheng-Qi1,2(), YIN Ming-Hui1, LI Tao1, SUN Kang3
1.College of Geoscience, Chengdu University of Technology, Chengdu 610059, China
2.Sichuan Key Laboratory of Geoscience and Nuclear Technology, Chengdu 610059, China
3.Mechanical Design Sixth Design and Research Institute Co., Ltd., Zhengzhou 450000, China
全文: PDF(5345 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对双江701和凤庆901铀矿点,对临沧地区富铀花岗岩体进行岩相学、地球化学和U-Pb定年研究,旨在探讨岩石成因类型、成岩构造背景与铀成矿的关系。结果表明:临沧富铀花岗岩体具有高硅(最高达90.11%,平均含量71.6%)、富碱、高钾、高钙特征,属于强过铝质、高钾钙碱性系列岩石。U-Pb锆石定年结论为214±12 Ma,表明临沧富铀花岗岩体形成于印支晚期。稀土元素呈微右倾“V”字形,轻、重稀土分馏明显(w(LREE)/w(HREE)平均为7.26),Eu负异常明显(δEu=0.28~0.49),相对富集Rb、U、Th,相对亏损Ba、Nb、Sr、Ti和Eu。综合分析认为,临沧富铀花岗岩属于分异明显的S型花岗岩,源于上地壳物质熔融,形成于碰撞后期造山环境之中,属于S澜沧江碰撞带有关的同碰撞花岗岩,其高含量的铀为铀成矿过程提供了部分铀源,铀元素经过淋滤作用被搬运到断层破碎带附近富集形成花岗岩型铀矿。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田建民
徐争启
尹明辉
李涛
孙康
关键词 临沧富铀花岗岩地球化学特征    
Abstract

Petrographic and geochemical study and U-Pb dating of uranium-rich granite bodies in Lincang area were carried out for Shuangjiang 701 and Fengqing 901 uranium mines, with the purpose of exploring the relationship between petrogenesis type, diagenetic tectonic background and uranium mineralization. The results show that Lincang uranium-rich granite body has high Si (up to 90.11%, averaging 71.6%), rich alkali, high potassium and high Ca, thus belonging to high Al and high potassium calcium alkaline series rocks. U-Pb zircon dating yielded 214±12 Ma, and thus Lincang uranium-rich granite body was formed in Late Indochina. Rare earth elements show a slightly rightward "V" shape, with obvious fractionation of light and heavy rare earth elements (w(LREE)/w(HREE) 7.26 on average), obvious negative Eu anomaly (δEu=0.28 ~ 0.49), relative enrichment of Rb, U and Th, and relative loss of Ba, Nb, Sr, Ti and Eu. Comprehensive analysis shows that Lincang uranium-rich granite belongs to S-type granite with obvious differentiation, which must have originated from melting of upper crust material and was formed in a mountain-building and rift environment in late collision, belonging to the simultaneous collision of granite related to the Lancang River collision zone. Its high content of uranium provided part of the uranium source for the uranium mineralization process. Uranium elements were transported to the vicinity of the fault fracture zone and was enriched to form granite-type uranium deposits by leaching.

Key wordsLincang    uranium-rich granite    geochemical characteristics
收稿日期: 2019-11-27      出版日期: 2020-10-26
:  P632  
基金资助:国家自然科学基金项目“康滇地轴粗粒晶质铀矿标型特征及形成机理”(41872079);四川省应用基础研究项目“四川冕宁—攀枝花地区新元古代铀成矿作用及成矿机理研究”(2020YJ0361);中国核工业地质局科研项目“康滇地轴新元古代铀成矿关键控矿因素研究”(201807)
通讯作者: 徐争启
作者简介: 田建民(1996-),男,硕士研究生,地质学专业。Email: 1067239658@qq.com
引用本文:   
田建民, 徐争启, 尹明辉, 李涛, 孙康. 临沧地区富铀花岗岩体地球化学特征及其地质意义[J]. 物探与化探, 2020, 44(5): 1103-1115.
TIAN Jian-Min, XU Zheng-Qi, YIN Ming-Hui, LI Tao, SUN Kang. Geochemical characteristics and geological significance of uranium-rich granites in Lincang area. Geophysical and Geochemical Exploration, 2020, 44(5): 1103-1115.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1554      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1103
Fig.1  三江地区地质简图(据参考文献[21]修改)
a—构造位置图;b—研究区地质简图
Fig.2  临沧花岗岩岩石学特征
a—似斑状黑云母二长花岗岩,含有多条石英脉;b—中细粒花岗岩体内发育不规则状暗色包体;c—似斑状黑云二长花岗岩内发育自形五边形石英晶体;d—自形石英颗粒,赤铁矿化严重;e—钾长石被石英包围,聚片双晶发育;f—钾长石卡式双晶,部分钾长石发生高岭土化,斜长石绢云母化;其中e、f为正交偏光图像;Q—石英;Kf—钾长石;Pl—斜长石;Bi—黑云母
编号 含量/10-6 w(Th)/
w(U)
207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 238U/232Th 年龄(Ma)±1σ
Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U
YN057-01 49.9 444.3 1427.1 0.31 0.052 0.265 0.036 0.010 2.606 305.6±64.8 238.5±6.3 228.7±2.5
YN057-03 34.2 322.2 877.4 0.37 0.050 0.262 0.038 0.012 2.279 198.2±78.7 236.3±7.6 237.9±3.0
YN057-04 47.5 506.3 1136 0.45 0.053 0.266 0.036 0.013 1.863 322.3±77.8 239.9±7.0 230.8±2.4
YN057-05 55.3 483.3 1532.9 0.32 0.050 0.246 0.035 0.012 2.623 194.5±66.7 223.7±5.6 224.5±2.1
YN057-07 31.1 306.2 802.9 0.38 0.051 0.255 0.036 0.012 2.160 235.3±90.7 230.6±7.7 229.5±2.6
YN057-08 31.4 375.5 807.4 0.47 0.051 0.246 0.035 0.011 1.779 239±72.2 223.4±8.6 220.9±2.7
YN057-09 19.4 179.4 465.2 0.39 0.058 0.290 0.036 0.014 2.145 527.8±102.8 258.4±9.8 230±3.1
YN057-10 33.4 492.7 768.1 0.64 0.050 0.236 0.034 0.012 1.291 190.8±92.6 215±7.4 216.2±2.3
YN057-11 35.5 448.1 893.9 0.5 0.050 0.237 0.035 0.011 1.652 189±77.8 215.8±6.1 218.7±2.4
YN057-12 47.3 507.9 1266.8 0.4 0.050 0.245 0.035 0.011 2.081 213±41.7 222.8±6.1 222.9±2.2
YN057-13 15.9 212.7 368.4 0.58 0.053 0.270 0.037 0.011 1.435 320.4±110.2 242.7±9.7 234.9±3.3
YN057-14 16.3 160.8 436.9 0.37 0.052 0.248 0.035 0.012 2.273 333.4±98.1 224.6±8.5 219.6±2.7
YN057-15 57.4 817.9 1280.4 0.64 0.053 0.266 0.036 0.012 1.317 309.3±68.5 239.6±6.7 230.4±2.3
YN057-16 40 351.5 1108 0.32 0.053 0.262 0.035 0.012 2.652 344.5±66.7 236.1±6.3 224.8±2.4
YN057-17 31.3 236.2 879.2 0.27 0.055 0.280 0.037 0.013 3.006 420.4±78.7 250.4±8.0 232.5±2.6
YN057-18 24.8 254 681.9 0.37 0.049 0.235 0.035 0.012 2.247 200.1±95.4 214.5±7.4 220.5±2.6
YN057-19 32.9 479.3 789.7 0.61 0.052 0.246 0.034 0.012 1.378 298.2±81.5 223.3±7.0 215.7±2.6
YN057-20 36.9 401 1031.8 0.39 0.052 0.247 0.034 0.011 2.158 272.3±70.4 223.8±6.1 218.3±2.3
YN057-21 34.6 344.9 957.2 0.36 0.051 0.250 0.035 0.012 2.358 261.2±90.7 226.8±7.2 222.9±2.7
YN057-22 24.9 269.8 652.5 0.41 0.050 0.246 0.036 0.012 2.014 211.2±88.9 223.6±7.3 226.8±2.9
YN057-23 21.8 230.9 570.9 0.4 0.051 0.246 0.035 0.012 2.056 220.4±100 223±8.5 223.9±3.0
YN057-24 33.9 337.2 890.8 0.38 0.053 0.260 0.036 0.013 2.199 324.1±72.2 235±6.3 226.6±2.8
YN057-25 36.4 415.7 954.1 0.44 0.053 0.260 0.036 0.011 1.909 320.4±68.5 235±6.0 226.1±2.5
YN057-26 56.4 392.1 1686.9 0.23 0.055 0.265 0.035 0.013 3.575 413±68.5 238.7±6.1 221.7±3.1
Table 1  临沧富铀花岗岩体锆石LA-ICP-MS U-Pb定年结果
Fig.3  凤庆YN057花岗岩锆石CL图像
Fig.4  YN057锆石U-Pb年龄协和图
指标 双江样品 凤庆样品 中国
花岗岩[24]
世界
花岗岩[25]
YN027 YN028 YN029 YN030 YN031 YN050 YN051 YN052 YN053 YN054 YN055 YN056 YN057
SiO2 69.9 70.41 71.61 72.34 70.53 74.75 83 79.32 90.11 72.45 42.69 61.77 72.49 71.99 71.3
Al2O3 14.24 12.94 14.86 14.32 12.34 6.27 7.6 7.31 4.39 13.72 1.19 8.01 14.41 13.86 14.32
Fe2O3 1.77 4.08 1.59 1.47 3.41 4.79 3.72 2.73 1.99 2.12 14.97 5.1 1.9 1.37 1.21
MgO 1.14 0.82 0.73 0.62 0.63 0.28 0.56 0.24 0.16 0.54 0.34 0.66 0.71 0.81 0.71
CaO 1.63 0.62 0.47 0.53 1.18 0.07 0.08 0.06 0.05 0.29 0.3 0.52 0.69 0.12 0.05
Na2O 1.11 0.15 2.92 3.15 0.64 0.11 0.11 0.12 0.07 0.8 7.3 2.25 2.76 3.81 4.07
K2O 5.13 4.21 4.57 4.75 4.7 2.42 2.4 3.14 1.43 6 0.16 3.23 4.92 3.42 3.66
MnO 0.04 0.02 0.02 0.04 0.01 0 0.01 0.01 <0.004 0.03 0.03 0.1 0.03 1.55 1.84
TiO2 0.35 0.25 0.31 0.27 0.25 0.1 0.07 0.12 0.07 0.2 0.01 0.14 0.28 0.21 0.31
P2O5 0.11 0.19 0.11 0.1 0.12 0.03 0.04 0.05 0.02 0.12 0.3 0.43 0.11 0.2 0.12
FeO 0.89 0.58 0.92 1.29 0.56 0.66 2.62 0.47 0.59 0.7 0.65 0.68 1.44 1.7 1.64
烧失量 4.55 5.73 2.77 2.41 5.6 5.04 2.39 2.42 1.23 3.19 6.68 4.77 1.69
Total 100.86 100 100.88 101.29 99.97 94.52 102.6 95.99 100.11 100.16 74.62 87.66 101.43
A/NK 2.28 2.97 1.98 1.81 2.31 2.48 3.02 2.25 2.93 2.02 0.16 1.46 1.88
A/CNK 1.81 2.6 1.87 1.7 1.89 2.41 2.94 2.2 2.84 1.93 0.15 1.33 1.72
Na2O+K2O 6.24 4.36 7.49 7.9 5.34 2.53 2.51 3.26 1.5 6.8 7.46 5.48 7.68
Table 2  临沧地区富铀花岗岩主量元素分析结果
Fig.5  岩浆(火成岩)系统全碱—硅(TAS)分类图
Ir—Irvine 分界线,上方为碱性,下方为亚碱性。1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩、磷霞岩、粗白榴岩
Fig.6  SiO2-K2O判别图
Fig.7  铝质—准铝质花岗岩A/NK-A/CNK判别图
Fig.8  元素含量与采样位置示意
元素 双江样品 凤庆样品
YN027 YN028 YN029 YN030 YN031 YN050 YN051 YN052 YN053 YN054 YN055 YN056 YN057
La 25.40 16.20 28.20 22.60 28.70 13.60 11.70 14.80 11.50 29.80 2.37 20.70 49.50
Ce 56.90 34.80 57.10 41.70 62.40 27.60 23.20 29.00 17.40 63.40 2.66 37.90 81.50
Pr 7.67 4.48 6.87 5.14 7.73 3.37 3.13 3.40 2.72 6.87 0.47 4.90 10.70
Nd 25.80 17.70 28.00 20.90 27.30 12.30 11.20 13.00 9.96 26.30 2.17 18.70 38.80
Sm 6.26 5.64 7.12 4.27 9.28 2.53 2.49 2.54 1.87 6.09 0.70 3.85 7.87
Eu 0.75 0.88 1.06 0.53 1.60 0.21 0.21 0.22 0.20 0.51 0.13 0.39 0.70
Gd 4.51 5.59 5.97 3.64 11.40 1.81 1.89 1.84 1.62 4.59 0.89 3.32 6.60
Tb 0.81 1.31 1.19 0.53 2.78 0.29 0.29 0.32 0.26 0.82 0.20 0.52 1.18
Dy 4.11 7.92 6.34 2.76 17.60 1.27 1.48 1.54 1.29 3.66 1.04 2.87 6.05
Ho 0.74 1.60 1.11 0.52 3.97 0.29 0.30 0.31 0.26 0.69 0.22 0.51 1.16
Er 2.02 3.72 2.92 1.43 10.00 0.87 0.88 0.91 0.72 1.88 0.58 1.39 3.21
Tm 0.32 0.59 0.46 0.23 1.36 0.17 0.15 0.15 0.12 0.34 0.11 0.25 0.54
Yb 1.91 3.02 2.29 1.40 6.57 0.96 1.05 0.97 0.81 2.15 0.75 1.54 3.59
Lu 0.26 0.36 0.32 0.22 0.77 0.15 0.14 0.13 0.10 0.29 0.09 0.22 0.45
Be 6.40 8.21 6.79 6.14 6.05 2.06 3.60 2.08 1.59 5.26 2.49 5.76 6.52
Sc 6.70 6.34 6.52 5.32 4.47 2.99 2.90 3.28 1.66 4.83 0.41 2.83 5.82
V 45.80 28.20 32.10 22.50 38.80 15.20 21.80 11.60 6.98 20.70 58.30 383.00 25.10
Cr 15.90 11.60 12.40 10.60 10.60 3.30 3.40 3.61 2.35 6.66 9.64 8.47 9.24
Co 8.57 18.60 9.80 3.34 2.49 1.09 0.56 0.43 0.35 2.05 16.40 19.30 2.94
Ni 5.63 10.90 6.63 5.58 2.02 0.94 1.41 1.26 0.88 4.07 2.18 2.89 3.55
Cu 21.00 22.00 23.70 17.40 17.70 100.00 50.30 196.00 62.20 48.40 727.00 703.00 3.76
Zn 12.90 29.80 29.60 22.60 23.40 288.00 764.00 290.00 146.00 2407.00 59322.00 33929.00 140.00
Ga 21.40 21.00 23.80 19.00 18.20 13.00 11.50 9.77 5.94 19.00 31.00 25.70 19.20
Rb 289.00 294.00 306.00 271.00 268.00 217.00 212.00 211.00 124.00 403.00 13.90 226.00 313.00
Sr 48.80 58.70 61.30 72.90 64.90 6.91 10.60 5.09 2.32 28.40 7.09 17.50 60.20
Y 20.00 52.90 33.70 14.60 145.00 9.17 8.50 9.17 9.01 20.50 7.98 16.70 32.20
Mo 2.04 1.59 0.33 0.28 1.58 0.75 0.39 0.38 0.07 0.00 52.40 1.15 0.17
Cd 0.05 0.18 0.07 0.05 0.07 0.50 4.29 1.27 1.17 4.04 251.00 114.00 0.76
In 0.05 0.04 0.04 0.04 0.03 0.16 0.11 0.53 0.05 0.03 1.66 0.80 0.03
Sb 2.08 11.60 3.54 0.76 13.30 47.50 5.63 46.90 31.30 0.65 250.00 46.40 0.30
Cs 23.60 70.80 28.50 19.70 48.90 12.70 8.17 5.07 3.11 11.70 1.34 13.80 15.40
Ba 496.00 191.00 379.00 328.00 445.00 117.00 178.00 152.00 61.30 487.00 11.40 211.00 456.00
Tl 2.08 10.10 1.91 1.53 15.90 1.63 1.24 1.32 0.69 2.65 0.50 1.58 1.92
Pb 37.50 333.00 126.00 49.70 620.00 9446.00 551.00 10751.00 955.00 2219.00 28776.00 19703.00 89.00
Bi 1.06 2.34 0.52 0.57 1.60 15.90 0.68 2.82 5.28 2.07 29.60 23.50 0.75
Th 23.40 18.70 22.80 19.30 9.97 3.98 9.54 9.07 7.36 33.00 0.63 18.60 36.20
U 45.90 268.00 158.00 30.20 64.00 7.65 3.49 11.60 3.38 10.90 1751.00 1179.00 8.26
Nb 13.50 11.40 13.50 11.20 9.81 4.93 3.89 6.21 3.24 11.40 0.26 6.34 12.40
Ta 2.64 2.16 2.42 2.31 1.85 1.13 1.05 1.45 0.84 2.98 0.06 1.58 2.64
Zr 97.50 103.00 118.00 102.00 110.00 21.70 15.20 21.50 14.80 26.90 1.15 25.30 60.20
Hf 3.72 3.51 4.04 3.44 3.25 0.79 0.61 0.79 0.63 1.03 0.05 1.02 2.32
Table 3  临沧富铀花岗岩微量、稀土元素分析结果
Fig.9  微量元素原始地幔标准化蛛网图(标准化值引自Sun and McDonough[27])
Fig.10  稀土元素球粒陨石标准化模式图(标准化值引自Sun and McDonough[27])
Fig.11  富铀花岗岩岩石成因类型判别图解
a—TiO2-Zr判别图;b—花岗岩ACF图解
Fig.12  花岗岩主、微量元素构造环境判别图解
IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;POG—后造山花岗岩类;RRG与裂谷有关花岗岩类;CEUG—与大陆的构造抬升有关花岗岩类;syn-COLG—同碰撞花岗岩类;VAG—火山弧花岗岩类;WPG—板内花岗岩;ORG—洋脊花岗岩类
Fig.13  “三江”云南段铀地球化学异常分布(据参考文献[24]修改)
[1] 杜乐天, 王玉明. 华南花岗岩型、火山岩型、碳硅泥岩型、砂岩型铀矿成矿机理的统一性[J]. 放射性地质, 1984(3):1-10.
[1] Du L T, Wang Y M. The unity of metallogenic mechanism of granite type, volcanic type, carbosilicate mudstone type and sandstone type uranium deposits in South China[J]. Radiogeology, 1984(3):1-10.
[2] 王联魁. 华南花岗岩铀矿中硅化带—绿泥石化带—碱长交代体三位一体的演化模式[J]. 岩石学报, 1986,1(2):1-14.
[2] Wang L K. The Trinity evolution model of silicified zone, Chloritized zone and alkali feldspar metasomatic body in granite uranium deposits of South China[J]. Actapetrologica Sinica, 1986,1(2):1-14.
[3] 倪师军, 胡瑞忠, 金景福. 寻找隐伏铀矿床的一种可能的地球化学模式[J]. 矿物岩石地球化学通讯, 1996(1):6-9.
[3] Ni S J, Hu R Z, Jin J F. Looking for a possible geochemical model for hidden uranium deposits[J]. Mineral Petroleum and Geochemical Communications, 1996(1):6-9.
[4] Dahlkamp F J. Uranium deposits of the world[M]. Berlin:Springer, 2009.
[5] 胡国成. 华南花岗岩型铀矿成因探究[J]. 中山大学研究生学刊:自然科学·医学版, 2011,32(2):9-16.
[5] Hu G C. Genesis of granite type uranium deposits in South China[J]. Graduate Journal of Sun Yatsen University:Natural Science, Medical Edition, 2011,32(2):9-16.
[6] 赵春江, 周四春, 刘晓辉, 等. 隐伏花岗岩铀矿上方的X荧光异常特征及其找矿意义[J]. 物探与化探, 2012,36(6):1055-1058.
[6] Zhao C J, Zhou S C, Liu X H, et al. The characteristics of X-ray fluorescence anomalies above concealed granite uranium deposits and their prospecting significance[J]. Geophysical and Geochemical Exploration, 2012,36(6):1055-1058.
[7] 牟平, 潘家永, 钟福军, 等. 诸广—下庄铀矿集区产铀与非产铀花岗岩地球化学特征及成因对比研究[J]. 矿物学报, 2015,35(S1):325-326.
[7] Mou P, Pan J Y, Zhong F J, et al. Geochemical characteristics and Genesis comparison of uranium producing and non uranium producing granites in Zhuguang-Xiazhuang uranium ore concentration area[J]. Actamineralogica Sinica, 2015,35(S1):325-326.
[8] 周航兵, 潘家永, 钟福军, 等. 粤北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系[J]. 矿物岩石, 2018,38(1):10-19.
[8] Zhou H B, Pan J Y, Zhong F J, et al. Genesis of fine-grained biotite granite and its relationship with uranium mineralization in the Yangtze River uranium ore field in northern Guangdong[J]. Mineral Rocks, 2018,38(1):10-19.
[9] 徐争启, 宋昊, 尹明辉, 等. 华南地区新元古代花岗岩铀成矿机制——以摩天岭花岗岩为例[J]. 岩石学报, 2019,35(9):2695-2710.
[9] Xu Z Q, Song H, Yin M H, et al. Uranium mineralization mechanism of Neoproterozoic granites in South China: A case study of Motianling granites[J]. Actapetrologica Sinica, 2019,35(9):2695-2710.
[10] 钟大赉, 等. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 176-177.
[10] Zhong D Z, et al. Guttis qrogenic belt in western Yunnan and Sichuan [M]. Beijing: Science Press, 1998: 176-177.
[11] 李文昌, 潘桂棠, 侯增谦, 等. 西南“三江”多岛弧盆—碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010.
[11] Li W C, Pan G T, Hou Z Q, et al. Metallogenic theory and exploration technology of “Three Rivers” multi island arc basin collision orogeny in Southwest China [M]. Beijing: Geological Press, 2010.
[12] Wang B D, Wang L Q, Pan G T, et al. U-Pb zircon dating of Early Paleozoic gabbro from the Nantingheophiolite in the Changning-Menglian suture zone and its geological implication[J]. China Science Bulletin, 2013,58(8):920-930.
doi: 10.1007/s11434-012-5481-8
[13] 邓军, 王庆飞, 李龚健. 复合造山和复合成矿系统:三江特提斯例析[J]. 岩石学报, 2016,32(8):2225-2247.
[13] Deng J, Wang Q F, Li G J. Composite orogeny and composite metallogenic system: A case study of Sanjiang Tethys[J]. Acta Petrologica Sinica, 2016,32(8):2225-2247.
[14] 彭头平, 王岳军, 范蔚茗, 等. 澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义[J]. 中国科学:D辑, 2006,36(2):123-132.
[14] Peng T P, Wang Y J, Fan W M, et al. Shrimp zircon U-Pb dating and tectonic significance of early Mesozoic acid igneous rocks in the South Lancang section[J]. Chinese Science:Series D, 2006,36(2):123-132.
[15] 刘德利, 刘继顺, 张彩华, 等. 滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境[J]. 岩石矿物学杂志, 2008,27(1):23-31.
[15] Liu D L, Liu J S, Zhang C H, et al. Geological characteristics and forming environment of Yunxian granite in the northern segment of Lancangjiang junction zone in the south of Western Yunnan[J]. Journal of Rock Mineralogy, 2008,27(1):23-31.
[16] 孔会磊, 董国臣, 莫宣学, 等. 滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 岩石学报, 2012,28(5):1438-1452.
[16] Kong H L, Dong G C, Mo X X, et al. Petrogenesis of Lincang granite in Sanjiang area, western Yunnan: geochemistry, zircon UPB chronology and Hf isotope constraints[J]. Acta Petrologica Sinica, 2012,28(5):1438-1452.
[17] 廖世勇, 尹福光, 王冬兵, 等. 滇西“三江”地区临沧花岗岩基中三叠世碱长花岗岩的发现及其意义[J]. 岩石矿物学杂志, 2014,33(1):1-12.
[17] Liao S Y, Yin F G, Wang D B, et al. Discovery and significance of Triassic alkali feldspar granite in Lincang granitic batholith in Sanjiang area, western Yunnan[J]. Journal of Rock Mineralogy, 2014,33(1):1-12.
[18] 晏中海. 云南省临沧地区花岗岩型铀矿成矿条件分析[C]// 中国核学会2017年学术年会论文集(二), 2017: 616-621.
[18] Yan Z H. Analysis of metallogenic conditions of granite-type uranium deposits in Lincang area, Yunnan Province[C]// Proceedings of the 2017 Annual Conference of Chinese Nuclear Society (2), 2017: 616-621.
[19] Peng T P, Wilde S A, Wang Y J, et al. Mid-Triassic felsic igneous rocks fromthe southern Lancangjiang Zone, SW China: Petrogenesis and implicationsfor the evolution of Paleo-Tethys[J]. Lithos, 2013, 168-169(2):15-32.
[20] 冯明月, 何德宝. 华南富铀花岗岩和产铀花岗岩特征[J]. 铀矿地质, 2012,28(4):199-207.
[20] Feng M Y, He D B. Characteristics of uranium-rich granites and uranium-producing granites in South China[J]. Geology of Uranium Ore, 2012,28(4):199-207.
[21] 孙康. 云南临沧印支—燕山期花岗岩地球化学特征及铀成矿条件分析[D]. 成都:成都理工大学, 2018.
[21] Sun K. Geochemical characteristics of Indosinian-Yanshan period granite in Lincang, Yunnan, and uranium mineralization conditions[D]. Chengdu:Chengdu University of Technology, 2018.
[22] 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包地球化学[J]. 地球化学, 2004,33(5):459-464.
[22] Lu Y F. GeoKit: A geochemical tool package built with VBA for geochemistry[J]. Geochimica, 2004,33(5):459-464.
[23] 王舫, 刘福来, 刘平华, 等. 澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义[J]. 岩石学报, 2014,30(10):3034-3050.
[23] Wang F, Liu F L, Liu P H, et al. Zircon U-Pb age and tectonic significance of Lincang granite in South Lancang Section[J]. Acta Petrologica Sinica, 2014,30(10):3034-3050.
[24] 谢学锦. 西南地区76种元素地球化学(第1版)[M]. 北京: 地质出版社, 2008.
[24] Xie X J. Geochemistry of 76 elements in Southwest China(1st edition)[M]. Beijing: Geological Publishing House, 2008.
[25] Li T. Elements abundance of China’s continental crust and its sedimentary layer and upper continental crust[J]. Chinese Journal of Geochemistry, 1995,14(1):26-32.
doi: 10.1007/BF02840380
[26] 徐争启, 倪师军, 张成江, 等. 桂北摩天岭地区花岗岩体特征与铀成矿作用[M]. 北京: 科学出版社, 2014.
[26] Xu Z Q, Ni S J, Zhang C J, et al. Characteristics of granite bodies and uranium mineralization in the Motianling area of northern Guangxi [M]. Beijing: Science Press, 2014.
[27] Sun S S, McDonough W S. Chemical and isotopic systematics ofoceanic basalts: Implications for mantle composition and processes[M]. New York: Oxford Univ Press, 1989.
[28] 杨振德. 一条巨型花岗岩推覆体[J]. 云南地质, 1995,14(2):99-108.
[28] Yang Z D. A giant granite nappe[J]. Yunnan Geology, 1995,14(2):99-108.
[29] 杨振德. 云南临沧花岗岩的冲断叠瓦构造与推覆构造[J]. 地质科学, 1996,31(2):130-139.
[29] Yang Z D. Thrust imbrication structure and nappe structure of Lincang granite, Yunnan[J]. Geological Science, 1996,31(2):130-139.
[30] 李兴林. 临沧复式花岗岩基的基本特征及形成构造环境的研究[J]. 云南地质, 1996,15(1):1-18.
[30] Li X L. Study on the basic characteristics and tectonic environment of Lincang composite granitic batholith[J]. Yunnan Geology, 1996,15(1):1-18.
[31] Sone M S, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008,340(2-3):166-179.
[32] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992,83:1-26.
[33] Clemens J D, Stevens G, Farina F. The enigmatic sources of I-typegranites: The peritecticconnexion[J]. Lithos, 2011,126(3):174-181.
[34] Chappell B W, Bryant C J, Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012,153(8):142-153.
doi: 10.1016/j.lithos.2012.07.008
[35] Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995,33:267-309.
[36] 沈上越, 冯庆来, 刘本培. 三江地区南澜沧江带火山岩构造岩浆类型[J]. 矿物岩石, 2002,22(3):66-71.
[36] Shen S Y, Feng Q L, Liu B P. Types of tectonic magma of volcanic rocks in the Nanlancang River belt of Sanjiang area[J]. Mineral Rock, 2002,22(3):66-71.
[37] 俞赛赢, 李昆琼, 施玉萍, 等. 临沧花岗岩基中段花岗闪长岩类研究[J]. 云南地质, 2003,22(4):426-442.
[37] Yu S Y, Li K Q, Shi Y P, et al. Study on granodiorite in the middle segment of Lincang granite base[J]. Yunnan Geology, 2003,22(4):426-442.
[38] 莫宣学, 沈上越, 朱勤文. 三江中南段火山岩蛇绿岩与成矿[M]. 北京: 地质出版社, 1998.
[38] Mo X X, Shen S Y, Zhu Q W. Volcanic ophiolites and metallogenesis in the middle and south of Sanjiang [M]. Beijing: Geological Publishing House, 1998.
[39] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987.
[39] Liu Y J, Cao L M. Introduction to elemental geochemistry [M]. Beijing: Geological Publishing House, 1987.
[40] 肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002.
[40] Xiao Q H, Deng J F, Ma D Q, et al. Thinking and methods of granite research [M]. Beijing: Geological Publishing House, 2002.
[1] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[2] 徐云峰, 郝雪峰, 秦宇龙, 王显锋, 熊昌利, 李名则, 武文辉, 詹涵钰. 四川岔河地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2021, 45(3): 624-638.
[3] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[4] 吴松, 陈政, 李元彬, 黄钊, 张林, 许胜超, 王开贵. 云南省者竜—嘎洒地区Cr、Ni地球化学特征及土壤污染风险防控建议[J]. 物探与化探, 2021, 45(2): 517-527.
[5] 陶春军, 史春鸿, 张笑蓉, 管后春, 贾十军. 淮北平原覆盖区土壤采样密度及其环境质量研究——以1∶5万高炉集幅为例[J]. 物探与化探, 2021, 45(1): 200-206.
[6] 韩伟, 王乔林, 宋云涛, 彭敏, 王成文. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222.
[7] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[8] 王小高, 王英超, 程宝成, 杨永千, 王杰, 陈鹏. 河南省西簧钒矿岩石地球化学特征及矿床成因[J]. 物探与化探, 2020, 44(5): 1116-1124.
[9] 陆伟彦, 杜明龙, 纪山青, 刘川, 孟祥元, 邢仕, 刘子江. 河北省卢龙县亮甲峪测区地球化学异常及找矿意义[J]. 物探与化探, 2020, 44(4): 719-726.
[10] 余飞, 张风雷, 张永文, 王锐, 王佳彬. 重庆典型农业区土壤硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(4): 830-838.
[11] 唐世琪, 万能, 曾明中, 杨柯, 刘飞, 彭敏, 李括, 杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
[12] 和成忠, 武睿, 郭军, 邹祖建, 李权衡, 马一奇. 云南待补镇—德泽镇一带地球化学特征及异常评价[J]. 物探与化探, 2020, 44(2): 235-244.
[13] 翁望飞, 王德恩, 王邦民, 丁勇, 王拥军. 安徽省祁门—黟县地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2020, 44(1): 1-12.
[14] 王卫星, 曹淑萍, 李攻科, 张亚娜. 津北水土环境氟地球化学特征及其环境质量评价[J]. 物探与化探, 2020, 44(1): 207-214.
[15] 周亚龙, 郭志娟, 王成文, 陈杰, 彭敏, 成杭新. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com