Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1446-1454    DOI: 10.11720/wtyht.2020.1525
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
山东省安丘地区农业土壤重金属元素地球化学特征及环境评价
赵秀芳1(), 张永帅1, 冯爱平1, 王艺璇2, 夏立献1, 王宏雷1, 杜伟1
1.山东省第七地质矿产勘查院,山东 临沂 276006
2.南京农业大学 园艺学院,江苏 南京 210095
Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shandong Province
ZHAO Xiu-Fang1(), ZHANG Yong-Shuai1, FENG Ai-Ping1, WANG Yi-Xuan2, XIA Li-Xian1, WANG Hong-Lei1, DU Wei1
1. The Seventh Geological and Mineral Exploration Institute, Linyi 276006,China
2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095,China
全文: PDF(6513 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了解山东安丘地区土壤重金属污染现状,在该区系统采集了10 194件表层土壤样品,对Cd、Hg、Pb、As等8种重金属元素含量开展测试分析,并采用地学统计、多元统计等分析方法,探讨重金属元素的地球化学分布特征及其可能的来源。结果表明,研究区土壤中Cd、Hg、As含量平均值与潍坊市土壤背景值相当,其他元素含量平均值稍高于潍坊市土壤背景值,8种重金属元素均值均小于规范风险筛选值。根据聚类分析,8种重金属元素主要分为4类,第一类为Cr、Ni、Cu和Zn,其分布主要受成土母质等自然因素的影响,且Zn同时还受人类活动影响;第二类为Cd、Pb,第三类为Hg,其分布特征受金属冶炼加工、交通、采矿等人类活动影响较大;第四类为As,除继承成土母质外,其分布特征还受人为活动的影响。采用《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018)评价研究区土壤环境质量,结果表明研究区土壤环境以安全区为主,无风险,仅在个别地方存在点源污染。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵秀芳
张永帅
冯爱平
王艺璇
夏立献
王宏雷
杜伟
关键词 土壤重金属元素地球化学特征环境评价安丘市    
Abstract

In order to understand the status of soil heavy metal pollution in Anqiu Area, Shandong Province,10 194 soil samples are systematically collected,the contents of 8 heavy metal elements including Cd, Hg, Pb and As are tested and analyzed.The geochemical distribution characteristics of heavy metal elements and their possible sources are discussed by using geostatistical and multivariate statistical methods.The results show that the average contents of Cd, Hg and As in the soil of the study area are similar to the background values of Weifang soil, and the average contents of other elements are slightly higher than the soil background values of Weifang.The average contents of the 8 heavy metal elements are all lower than risk screening values of standard. According to cluster analysis,eight heavy metal elements are mainly divided into four categories.The first category is Cr, Ni, Cu and Zn, whose distributions are mainly affected by natural factors such as the parent material of the soil, while Zn is also affected by human activities.The second category is Cd,Pb and the third category is Hg. The distribution characteristics of these elements are greatly affected by human activities such as metal smelting and processing, transportation, mining, etc.The fourth category is As, which is not only inherited from the the parent material of the soil, but also affected by human activities. The soil environmental quality in the study area is evaluated by Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land(GB 15618—2018),the results show that the soil environment in the study area is mainly safe zone, risk-freeand. Point source pollution only exists in some places.

Key wordssoil heavy metal elements    geochemical characteristics    environmental assessment    Anqiu city
收稿日期: 2019-11-06      出版日期: 2020-12-29
ZTFLH:  P632  
基金资助:山东省财政基金项目(鲁勘字(2016)57号)
作者简介: 赵秀芳(1972-),女,高级工程师,地球化学专业,主要从事环境地球化学研究工作。Email:zhxfwg@163.com
引用本文:   
赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
ZHAO Xiu-Fang, ZHANG Yong-Shuai, FENG Ai-Ping, WANG Yi-Xuan, XIA Li-Xian, WANG Hong-Lei, DU Wei. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shandong Province. Geophysical and Geochemical Exploration, 2020, 44(6): 1446-1454.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1525      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1446
Fig.1  安丘市地理位置
Fig.2  安丘市土壤类型
Fig.3  主要矿产分布
污染
项目
风险筛选值/10-6
pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
0.3 0.3 0.3 0.6
1.3 1.8 2.4 3.4
40 40 30 25
70 90 120 170
150 150 200 250
50 50 100 100
60 70 100 190
200 200 250 300
Table 1  农用地土壤污染风险筛选值
污染
项目
风险管控值/10-6
pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
1.5 2 3 4
2.0 2.5 4 6
200 150 120 100
400 500 700 1000
800 850 1000 1300
Table 2  农用地土壤污染风险管制值
等级 一等 三等 三级
污染风险 无风险 风险可控 风险较高
划分方法 CiSi Ci<SiGi Ci>Gi
Table 3  土壤环境地球化学等级划分界限
元素 最大值/10-6 最小值/10-6 平均值/10-6 中值/10-6 标准差 Cv/% 偏度 峰度 潍坊市土壤
背景值[21]
Cd 5.96 0.01 0.12 0.11 0.12 94.90 1246.09 30.37 0.11
Hg 2.290 0.001 0.033 0.030 0.046 138.40 1310.1 31.29 0.03
Pb 1665.10 3.10 28.33 24.18 31.07 109.70 1004.05 25.27 22.90
As 223.00 0.01 7.79 7.70 4.02 51.60 861.03 17.84 7.80
Cr 2227.00 6.09 80.38 68.30 49.45 61.50 358.31 10.38 65.30
Ni 1084.00 2.94 37.21 29.70 31.27 84.00 137.57 7.02 26.90
Cu 288.00 3.63 25.19 23.10 11.10 44.10 43.32 3.76 21.20
Zn 1129.16 6.40 67.19 63.81 27.26 40.60 406.01 13.2 58.50
Table 4  表层土壤重金属元素含量统计特征值
Fig.4  表层土壤重金属元素含量空间分布
元素 Cd Hg Pb As Cr Ni Cu Zn
Cd 1
Hg 0.087** 1
Pb 0.583** 0.059** 1
As 0.145** 0.095** 0.175** 1
Cr 0.053** -0.035** -0.090** -0.067** 1
Ni 0.058** -0.042** -0.094** -0.066** 0.910** 1
Cu 0.187** 0.037** 0.616** 0.697** 1
Zn 0.571** 0.036** 0.295** 0.067** 0.403** 0.429** 0.625** 1
Table 5  土壤重金属元素间相关系数
元素 主成分
F1 F2 F3 F4
Cd 0.409 0.775 -0.176 -0.133
Hg 0.011 0.218 0.825 -0.498
Pb 0.170 0.802 -0.191 -0.047
As 0.031 0.390 0.498 0.786
Cr 0.829 -0.385 0.054 0.036
Ni 0.861 -0.385 0.052 0.043
Cu 0.855 -0.116 0.076 0.050
Zn 0.777 0.362 -0.097 -0.082
特征值 2.961 1.884 1.017 0.090
方差/% 37.02 23.56 12.71 11.23
贡献率/% 37.02 60.57 73.28 84.46
Table 6  表层土壤重金属元素因子载荷
Fig.5  表层土壤重金属元素系统聚类分析
元素 成土母岩
冲洪积物 玄武岩 火山岩 石灰岩 闪长岩 花岗岩
Cd 0.12 0.12 0.12 0.14 0.11 0.11
Hg 0.034 0.024 0.03 0.0305 0.026 0.019
Pb 24.45 17.57 25.46 23.235 26.99 19.96
As 7.55 5.75 9.01 9.48 8.57 7.44
Cr 68.12 172.50 74.28 72.2 60.26 139.78
Ni 29.11 112.56 31.64 34.2 25.05 70.74
Cu 22.57 46.13 24.78 25.91 20.55 30.92
Zn 63.16 95.12 68.13 70.235 60.93 71.68
Table 7  不同成土母岩中重金属元素含量
Fig.6  土壤环境综合地球化学评价
[1] 崔邢涛, 栾文楼, 宋泽峰, 等. 石家庄城市土壤重金属空间分布特征及源解析[J]. 中国地质, 2016,43(2):683-690.
[1] Cui X T, Luan W L, Song Z F, et al. A study of the spatial distribution and source of heavy metals in urban soil in Shijiazhuang City[J]. Geology in China, 2016,43(2):683-690.
[2] 冯乙晴, 刘灵飞, 肖辉林, 等. 深圳市典型工业区土壤重金属污染特征及健康风险评价[J]. 生态环境学报, 2017,26(6):1051-1058.
[2] Feng Y Q, Liu L F, Xiao H L, et al. Pollution characteristics and health risk assessment of heavy metals in soil of typical industrial district of Shenzhen[J]. Ecology and Environmental Sciences, 2017,26(6):1051-1058.
[3] 李泽琴, 侯佳渝, 王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008,23(5):509-516.
[3] Li Z Q, Hou J Y, Wang J Z. Potential ecological risk assessment model for heavy metal contamination of agricultural soils in mining areas[J]. Advances in Earth Science, 2008,23(5):509-516.
[4] 段飞舟, 高吉喜, 何江, 等. 灌溉水质对污灌区土壤重金属含量的影响分析[J]. 农业环境科学学报, 2005,24(3):450-455.
[4] Duan F Z, Gao J X, He J, et al. Impact of irrigation water quality on heavy metals concentrations in surface soil of paddy field[J]. Journal of Agro-Environment Science, 2005,24(3):450-455.
[5] 王腾飞, 谭长银, 曹雪莹, 等. 长期施肥对土壤重金属积累和有效性的影响[J]. 农业环境科学学报, 2017,36(2):257-263.
[5] Wang T F, Tan C Y, Cao X Y, et al. Effects of long-term fertilization on the accumulation and availability of heavy metals in soil[J]. Journal of Agro-Environment Science, 2017,36(2):257-263.
[6] 张英英, 施志国, 李彦荣. 不同耕作方式对民勤绿洲耕层土壤理化性状及重金属含量的影响[J]. 生态环境学报, 2019,28(1):207-214.
[6] Zhang Y Y, Shi Z G, Li Y R, et al. Effects of different tillage methods on soil physical-chemical properties and heavy metal content in Minqin Oasis[J]. Ecology and Environmental Sciences, 2019,28(1):207-214.
[7] 李苹, 黄勇, 林贇, 等. 北京市怀柔区土壤重金属的分布特征、来源分析及风险评价[J]. 现代地质, 2018,32(1):86-94.
[7] Li P, Huang Y, Lin Y, et al. Distribution,source identification and risk assessment of heavy metals in topsoil of Huairou district in Beijing[J]. Geoscience, 2018,32(1):86-94.
[8] 李芳, 钱秋芳. 土壤重金属污染研究进展[J]. 安徽农学通报, 2011,17(10):80-82,202.
[8] Li F, Qian Q F. Advances in pollution of heavy metals in soil[J]. Anhui Agri. Sci. Bull., 2011,17(10):80-82,202.
[9] 段续川, 李苹, 黄勇, 等. 北京市密云区农业土壤重金属元素地球化学特征及生态风险评价[J]. 现代地质, 2018,32(1):95-104.
[9] Duan X C, Li P, Huang Y, et al. Geochemical characteristics and risk assessment of heavy metals in agricultural soils in Miyun district of Beijing[J]. Geoscience, 2018,32(1):95-104.
[10] 刘庆, 杜志勇, 史衍玺, 等. 山东省寿光市土壤重金属环境质量评价[J]. 江西农业大学学报, 2009,31(1):144-148.
[10] Liu Q, Du Z Y, Shi Y X, et al. Evaluationon environmental quality of heavy metals in Shouguang City,Shandong Province[J]. Acta Agriculturae Universitatis Jiangxi Ensis, 2009,31(1):144-148.
[11] 黄勇, 杨忠芳, 张连志, 等. 基于重金属的区域健康风险评价——以成都经济区为例[J]. 现代地质, 2008,22(6):990-997.
[11] Huang Y, Yang Z F, Zhang L Z, et al. Regional health risk assessmenton heavy metalsin Chengdu economic region[J]. Geoscience, 2008,22(6):990-997.
[12] 徐友宁, 张江华, 柯海玲, 等. 某金矿区农田土壤重金属污染的人体健康风险[J]. 地质通报, 2014,33(8):1239-1252.
[12] Xu Y N, Zhang J H, Ke H L, et al. Human health risk under the condition of farmland soil heavy metals pollution in a gold mining area[J]. Geological Bulletin of China, 2014,33(8):1239-1252.
[13] 夏芳, 王秋爽, 蔡立梅, 等. 有色冶金区土壤—蔬菜系统重金属污染特征及健康风险分析[J]. 长江流域资源与环境, 2017,26(6):865-873.
[13] Xia F, Wang Q S, Cai L M, et al. Contamination and health risk for heavy metals via consumption of vegetables grown in non-freeous metals smel ting area[J]. Resources and Environment in the Yangtze Basin, 2017,26(6):865-873.
[14] Chai J, Guo J, Chai S L, et al. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area,Jilin Province,Northeast China[J]. Chemosphere, 2015,134:67-75.
doi: 10.1016/j.chemosphere.2015.04.008 pmid: 25911049
[15] Cao L L, Tian H T, Yang J, et al. Multivariate analyses and evaluation of heavy metals by chemometric BCR sequential extraction method in surface sediments from Lingdingyang Bay,South China[J]. Sustainability, 2015,7:493-495.
[16] 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析和环境风险评价[J]. 地理学报, 2012,67(7):971-984.
doi: 10.11821/xb201207010
[16] Lyu J S, Zhang Z L, Liu Y, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City[J]. Acta Geographica Sinica, 2012,67(7):971-984.
[17] 李湘凌, 周涛发, 殷汉琴, 等. 基于层次聚类法和主成分分析法的铜陵市大气降尘污染元素来源解析研究[J]. 地质评论, 2010,56(2):283-288.
[17] Li X L, Zhou T F, Yin H Q, et al. Sources analysis of dustfall in Tongling City based on hierarchical cluster analysis and principal component analysis methods[J]. Geological Review, 2010,56(2):283-288.
[18] 王志楼, 谢学辉, 王慧萍, 等. 典型铜尾矿库周边土壤重金属复合污染特征[J]. 生态环境学报, 2010,19(1):113-117.
[18] Wang Z L, Xie X H, Wang H P, et al. Combined pollution character of heavy metals in soils around a typical copper tailing[J]. Ecology and Environmental Sciences, 2010,19(1):113-117.
[19] 张慧, 付强, 赵映慧. 松嫩平原北部土壤重金属空间分异特征及生态安全评价[J]. 水土保持研究, 2013,2:165-169.
[19] Zhang H, Fu Q, Zhao Y H. Spatial variability of soil heavy metalsand ecological quality assessment in the northern Songnen plain[J]. Research of Soil and Water Conservation, 2013,2:165-169.
[20] 生态环境部, 国家市场监督管理总局. GB 15618—2018 土壤环境质量农用地土壤污染风险管控标准[S]. 北京: 中国环境出版社, 2018.
[20] Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation. GB 15618—2018 Soil environmental quality risk control standard for soil contamination of agricultural land[S]. Beijing: China Environment Publishing, 2018.
[21] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019,35(1):46-56.
[21] Pang X G, Dai J R, Chen L, et al. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019,35(1):46-56.
[22] Zhao Y C, Wang Z G, Sun W X, et al. Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China[J]. Geoderma, 2010,156(3/4):216-227.
[23] David M G, Zhang C S, Owen T. Carton geostatistical analyses and hazard assessment on soil lead in Silvermines area,Ireland[J]. Environmental Pollution, 2004,127(2):239-248.
doi: 10.1016/j.envpol.2003.07.002 pmid: 14568723
[24] 高吉喜, 段飞舟, 香宝. 主成分分析在农田土壤环境评价中的应用[J]. 地理研究, 2006,25(2):836-842.
[24] Gao J X, Duan F Z, Xiang B. The application of principal component analysis to agriculture soil contamination assessment[J]. Geographical Research, 2006,25(2):836-842.
[25] 陈晓晨, 崔岩山. 城市表层土壤中重金属的小尺度空间分布——以首钢厂区附近小区为例[J]. 中科院研究生院学报, 2010,27(2):176-183.
[25] Chen X C, Cui Y S. Small-scalespatial distribution of heavy metal sinurbantop soil: A case study in a small erea near Shougang group[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2010,27(2):176-183.
[26] 姜佰文, 陆磊, 王春宏, 等. 施用有机肥对土壤重金属累积的影响及风险评价[J]. 东北农业大学学报, 2020,51(4):37-44.
[26] Jiang B W, Lu L, Wang C H, et al. Effect of organic fertilizer application on heavy metals accumulation in soil and risk assessment[J]. Journal of Northeast Agricultural University, 2020,51(4):37-44.
[27] 唐明海. 土壤重金属污染对农产品质量安全的影响及其防治分析[J]. 河南农业, 2019(3):48-49.
[27] Tang M H. Effects of soil heavy metal pollution on the quality and safety of agricultural products and its control[J]. Henan Agriculture, 2019(3):48-49.
[28] 敖明, 柴冠群, 范成五, 等. 稻田土壤和稻米中重金属潜在污染风险评估与来源解析[J]. 农业工程学报, 2019,35(6):198-205.
[28] Ao M, Chai G Q, Fan C W, et al. Evaluation of potential pollution risk and source analysis of heavy metals in paddy soil and rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(6):198-205.
[29] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019,38(10):2219-2238.
[29] Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019,38(10):2219-2238.
[1] 田建民, 徐争启, 尹明辉, 李涛, 孙康. 临沧地区富铀花岗岩体地球化学特征及其地质意义[J]. 物探与化探, 2020, 44(5): 1103-1115.
[2] 王小高, 王英超, 程宝成, 杨永千, 王杰, 陈鹏. 河南省西簧钒矿岩石地球化学特征及矿床成因[J]. 物探与化探, 2020, 44(5): 1116-1124.
[3] 陆伟彦, 杜明龙, 纪山青, 刘川, 孟祥元, 邢仕, 刘子江. 河北省卢龙县亮甲峪测区地球化学异常及找矿意义[J]. 物探与化探, 2020, 44(4): 719-726.
[4] 余飞, 张风雷, 张永文, 王锐, 王佳彬. 重庆典型农业区土壤硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(4): 830-838.
[5] 唐世琪, 万能, 曾明中, 杨柯, 刘飞, 彭敏, 李括, 杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
[6] 和成忠, 武睿, 郭军, 邹祖建, 李权衡, 马一奇. 云南待补镇—德泽镇一带地球化学特征及异常评价[J]. 物探与化探, 2020, 44(2): 235-244.
[7] 翁望飞, 王德恩, 王邦民, 丁勇, 王拥军. 安徽省祁门—黟县地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2020, 44(1): 1-12.
[8] 王卫星, 曹淑萍, 李攻科, 张亚娜. 津北水土环境氟地球化学特征及其环境质量评价[J]. 物探与化探, 2020, 44(1): 207-214.
[9] 周亚龙, 郭志娟, 王成文, 陈杰, 彭敏, 成杭新. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366.
[10] 郝义, 王显民, 王金香. 黑龙江新城沟地区花岗岩成矿地球化学特征分析及资源潜力预测[J]. 物探与化探, 2018, 42(3): 461-472.
[11] 李冲, 郝志红, 张忠进. 广东北市地区1∶5万水系沉积物测量粒级试验[J]. 物探与化探, 2018, 42(2): 303-311.
[12] 翁望飞, 王德恩, 汪永辉, 吴冀明, 闫峻, 张定源, 方捷. 安徽休宁桃溪铅锌矿地质、物化探特征及其找矿潜力[J]. 物探与化探, 2018, 42(1): 28-37.
[13] 梁胜跃, 刘建东, 郭炳跃, 徐明钻, 祁超, 金志鹏. 江苏省连云港市前三岛附近海域地球化学特征及风险指标探讨[J]. 物探与化探, 2017, 41(5): 963-971.
[14] 翟玉林, 魏俊浩, 李艳军, 李翔, 柯坤家. SEDEX型矿床研究现状及进展[J]. 物探与化探, 2017, 41(3): 392-401.
[15] 潘永敏, 徐玉琳, 华明, 廖启林, 倪俊, 高立, 周钢军. 镇江谏壁热电厂煤灰库对周边土壤硒的环境影响[J]. 物探与化探, 2017, 41(1): 177-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com