Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 839-846    DOI: 10.11720/wtyht.2020.1513
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例
王增辉()
山东省地质调查院 山东省土地质量地球化学与污染防治工程技术研究中心,山东 济南 250014
An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong:A case study of Juye County
Zeng-Hui WANG()
Shandong Institute of Geological Survey,Shandong Engineering Research Center of Land Quality Geochemistry and Pollution Prevention,Ji'nan 250014,China
全文: PDF(2533 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大气干湿沉降是农耕区表层土壤中某些元素的主要输入途径,其沉降物质中的重金属等元素对土壤环境质量有着很大的影响。对山东省巨野县大气干湿沉降的调查研究发现,随着近年来区内煤炭开采和化工工业的快速发展,区内大气干湿沉降物质总量有明显升高,显著高于我国其他一些地区。同时,区内重金属元素沉降通量也较高,其中Pb、Cr、Cu、Ni可达我国其他地区的2~3倍。大气沉降物质中Cd、Pb、Hg等的富集程度较高,其富集因子(EF)的高值区与煤炭开采和煤炭化工排放源分布吻合,说明工业区大气干湿沉降是Cd、Pb、Hg等重金属污染元素进入土壤环境的重要途径,工矿业活动对区内大气干湿沉降的增加有重要影响。此外,富集因子显示燃煤尘是大气沉降物及当地土壤S、Se的主要来源,而大气沉降物中Ni、Cr、As主要源自土壤扬尘,Ca和Mg与区内石材开采或水泥制造密切相关。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王增辉
关键词 大气干湿沉降重金属输入通量土壤环境巨野县    
Abstract

Dry and wet atmospheric deposition is a main input pathway of some elements in the surface soil of agricultural areas, and its heavy metalelementcomponents mayhave a great influence on the environmental qualityof soil. Research on the dry and wet atmosphericdeposition of Juye County in Shandong Province shows that, with the rapid development of coal mining and chemical industry in recent years, total amount of dry and wet atmospheric deposition has been significantly increased in this area, and is also significantly higher than that of several other regions of China.The deposition flux of heavy metal elements in this region is also higher,the deposition fluxes of Pb, Cr, Cu, Ni can be 2~ 3 times those of other regions inChina. The enrichment degree of Cd, Pb, Hg and other elements in atmospheric deposition is higher, and the high value area of the enrichment factor(EF) coincides with the position of the emission source of coal mining and coal chemical industry, which indicates that the dry and wet atmospheric deposition in the industrial area is an important way for heavy metal elements like Cd, Pb, Hg to enter the soil. Industrial activities have an important influence on the increase of dry and wet atmospheric deposition in thisarea. In addition, the enrichment factor shows thatcoal burning dusts should be the main source of S and Se in atmospheric deposition and soil. Ni, Cr, As in atmospheric deposition should mainly originate from soil dusts, and thesources of Ca and Mg are closely related to the stone mining and cement manufacturing industry.

Key wordsdry and wet atmospheric deposition    heavy metal    deposition flux    soil environment    Juye County
收稿日期: 2019-11-01      出版日期: 2020-08-28
:  P632  
基金资助:山东省地质勘查项目(鲁勘字201147号)
作者简介: 王增辉(1980-),男,高级工程师,本科,主要研究方向:农业地质、环境地球化学。Email:wzh80@qq.com
引用本文:   
王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例[J]. 物探与化探, 2020, 44(4): 839-846.
Zeng-Hui WANG. An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong:A case study of Juye County. Geophysical and Geochemical Exploration, 2020, 44(4): 839-846.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1513      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/839
Fig.1  大气干湿沉降取样点位
Fig.2  研究区大气干湿沉降物总量分布
元素 As Cd Cr Cu Hg Pb Ni Zn Se Fe S Ca Mg P K
区内通量算数均值 2.75 0.71 26.93 19.68 0.032 31.82 15.47 127 1.37 9.27 22.3 41.0 12.0 0.31 8.71
区内通量几何均值 2.49 0.67 22.24 17.72 0.030 30.23 13.76 115 1.14 8.21 12.8 28.5 9.5 0.24 7.45
区内通量最小值 1.14 0.38 9.04 8.11 0.020 17.77 5.95 56 0.35 3.75 4.5 8.5 2.6 0.09 2.96
区内通量最大值 5.61 1.16 73.20 42.45 0.070 57.07 34.50 243 3.11 22.36 123.5 203.4 40.4 1.27 21.46
区内(2005~2006) 1.10 0.31 18.69 7.15 0.025 13.65 4.02 43 0.45 0.19 2.79
北京(2005~2006)[11] 2.9 0.236 11.855 14.195 0.024 21.995 6.601 54.492 9.264 3.236 3.328
长春(2006~2007)[18] 4.79 0.25 10.67 8.22 0.03 12.31 48.15
成都(2004~2005)[19] 2.77 1.77 0.1 45.95 147.83 18.074 1.016 2.009
Table 1  巨野县大气干湿沉降元素通量统计及比较
Fig.3  大气沉降物导致的耕作层土壤元素年增加率比较
Fig.4  大气沉降物中Fe与As、Cd、Pb、Hg输入通量的相关性散点图
项目 As Cd Cr Cu Hg Pb Ni Zn Se Fe S Ca Mg P K
区内降尘含量均值 4.78 1.33 45.55 34.10 0.05 58.61 26.45 224.91 2.46 1.57 3.70 6.24 2.07 0.05 1.44
区内表层土壤背景值 10.85 0.17 68.2 21.9 0.03 21.24 28.27 66.88 0.17 3.15 0.023 4.28 1.31 0.108 1.93
菏泽表层土壤背景值 10.30 0.15 61.90 21.90 0.03 19.90 27.90 63.00 0.17 2.92 0.020 4.07 1.24 0.101 1.92
富集系数 0.44 7.81 0.67 1.56 1.75 2.76 0.94 3.36 14.33 0.50 160.38 1.46 1.58 0.47 0.75
富集因子(EF) 0.86 16.45 1.37 2.89 3.47 5.47 1.76 6.63 26.93 1.00 344.16 2.85 3.10 0.94 1.39
Table 2  区内大气沉降物中重金属等元素平均富集系数及富集因子
Fig.5  区内大气沉降物中Se与Cd、Ca富集因子散点图
Fig.6  区内大气沉降Cd、Pb、Ca、Se元素富集因子分布
[1] 王梦梦, 原梦云, 苏德纯. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 2017,37(11):4085-4096.
[1] Wang M M, Yuan M Y, Su D C. Characteristics and spatial-temporal variation of heavy metals in atmospheric dry and wet deposition of China[J]. China Environmental Science, 2017,37(11):4085-4096.
[2] 邹海明, 李粉茹, 官楠, 等. 大气中TSP和降尘对土壤重金属累积的影响[J]. 中国农学通报, 2006,22(5):393-395.
[2] Zou H M, Li F R, Guan N, et al. Effects of TSP and dustfall on heavy metal accumulation in soil[J]. Chinese Agricultural Science Bulletin, 2006,22(5):393-395.
[3] 张国忠, 黄威, 潘月鹏, 等. 河北典型农田大气重金属干沉降通量及来源解析[J]. 中国生态农业学报, 2019,27(8):1245-1254.
[3] Zhang G Z, Huang W, Pan Y P, et al. Dry deposition flux of atmospheric heavy metals and its source apportionment in a typical farmland of Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2019,27(8):1245-1254.
[4] 张乃明. 大气沉降对土壤重金属累积的影响[J]. 土壤与环境, 2001,10(2):91-93.
[4] Zhang N M. Effects of air settlement on heavy metal accumulation in soil[J]. Soil And Environmental Sciences, 2001,10(2):91-93.
[5] 李晋昌, 董治宝. 大气降尘研究进展及展望[J]. 干旱区资源与环境, 2010,24(2):102-109.
[5] Li J C, Dong Z B. Research progress and prospect of dustfall research[J]. Journal of Arid Land Resources and Environment, 2010,24(2):102-109.
[6] 张云峰, 于瑞莲, 胡恭任, 等. 泉州市大气PM2.5中有毒金属元素的环境风险评价[J]. 地球与环境, 2018,46(5):456-462.
[6] Zhang Y F, Yu R L, Hu G R, et al. Environmental risk assessment of toxic metal elements in PM2.5 of Quanzhou City[J]. Earth and Environment, 2018,46(5):456-462.
[7] 张忠地, 邵天杰, 卫佩茹. 开封市大气降尘中重金属污染及潜在生态危害评价[J]. 干旱区资源与环境, 2019,33(11):156-162.
[7] Zhang Z D, Shao T J, Wei P R. Assessment of heavy metal pollution and potential ecological hazards in atmospheric dust in Kaifeng city[J]. Journal of Arid Land Resources and Environment, 2019,33(11):156-162.
[8] Pawel K, Malgorzata S, Grazyna S, et al. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution[J]. Chemosphere, 2019,230:29-39.
doi: 10.1016/j.chemosphere.2019.05.058 pmid: 31102869
[9] Hissler C, Stille P, Geagea M L, et al. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina[J]. Science of the Total Environment, 2008,405(1/3):338-344.
[10] 王洋, 刘景双, 王金达, 等. 土壤pH值对冻融黑土重金属Cd赋存形态的影响[J]. 农业环境科学学报, 2008,27(2):574-578.
[10] Wang Y, Liu J S, Wang J D, et al. Effects of pH on the fraction transformations of Cd in phaiozem soil at the condition of freeze/thaw cycles[J]. Journal of Agro-Environment Science, 2008,27(2):574-578.
[11] 丛源, 陈岳龙, 杨忠芳, 等. 北京平原区元素的大气干湿沉降通量[J]. 地质通报, 2008,27(2):257-264.
[11] Cong Y, Chen Y L, Yang Z F, et al. Dry and wet atmospheric deposition fluxes of elements in the plain area of Beijing Municipality, China[J]. Geological Bulletin of China, 2008,27(2):257-264.
[12] 张良璧, 娄长庚. 大气降尘采样影响因素的研究[J]. 中国环境监测, 1986,2(1):9-12.
[12] Zhang L B, Lou C G. Study on the influence factors of atmospheric dust sampling[J]. Environmental Monitoring in China, 1986,2(1):9-12.
[13] 侯佳渝, 刘金成, 曹淑萍, 等. 天津市城区大气干湿沉降地球化学研究[J]. 地质调查与研究, 2013,36(2):131-135.
[13] Hou J Y, Liu J C, Cao S P, et al. Study on the dry and wet atmospheric deposition in the urban area of Tianjin[J]. Geological Survey and Research, 2013,36(2):131-135.
[14] 李延生. 黑龙江省松嫩平原南部大气降尘地球化学特征[J]. 物探与化探, 2011,35(4):536-540.
[14] Li Y S. Geochemical characteristics of atmosphleric dust in southern songnen plain, Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2011,35(4):536-540.
[15] 罗莹华, 戴塔根, 梁凯. 广东韶关市大气降尘及尘中金属元素分布特征研究[J]. 地质调查与研究, 2006,29(1):64-68.
[15] Luo Y H, Dai T G, Liang K. Study on distribution of the atmospheric dust-fall and its metal element contents in Shaoguan City, Guangdong Province[J]. Geological Survey and Research, 2006,29(1):64-68.
[16] 焦荔, 沈建东, 姚琳, 等. 杭州市大气降尘重金属污染特征及来源研究[J]. 环境污染与防治, 2013,35(1):73-76.
[16] Jiao L, Shen J D, Yao L, et al. Pollution characteristics and sources of heavy metals in atmospheric dustfall of Hangzhou[J]. Environmental Pollution and Control, 2013,35(1):73-76.
[17] 陈天虎, 徐惠芳. 大气降尘TEM观察及其环境矿物学意义[J]. 岩石矿物学杂志, 2003,22(4):425-428.
[17] Chen T H, Xu H F. TEM investigation of atmospheric particle settlings and its significance in environmental mineralogy[J]. Acta Petrologica et Mineralogica, 2003,22(4):425-428.
[18] 杨忠平, 卢文喜, 龙玉桥, 等. 长春市城区大气湿沉降中重金属及pH值调查[J]. 吉林大学学报:地球科学版, 2009,39(5):887-892.
[18] Yang Z P, Lu W X, Yu L Q, et al. Current situation of pH and wet deposition of heavy metals in precipatation in Changchun City, China[J]. Journal of Jilin University:Earth Science Edition, 2009,39(5):887-892.
[19] 汤奇峰, 杨忠芳, 张本仁, 等. 成都经济区As等元素大气干湿沉降通量及来源研究[J]. 地学前缘, 2007,14(3):213-222.
[19] Tang Q F, Yang Z F, Zhang B R, et al. A study of elements flux and sources from atmospheric bulk deposition in the Chengdu economic region[J]. Earth Science Frontiers, 2007,14(3):213-222.
[20] 毕木天. 关于富集因子及其应用问题[J]. 环境科学, 1984(5):68-70.
[20] Bi M T. About the enrichment factor and its application[J]. Environmental Science, 1984(5):68-70.
[21] 杨丽萍, 陈发虎, 张成君. 兰州市大气降尘的化学特性[J]. 兰州大学学报, 2002,38(5):115-120.
[21] Yang L P, Chen F H, Zhang C J. Chemical characteristics of atmospheric dust in Lanzhou[J]. Journal of Lanzhou University, 2002,38(5):115-120.
[22] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006,25(1):65-72.
[22] Zhang X Z, Bao Z Y, Tang J H. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006,25(1):65-72.
[23] 顾家伟. 我国城市大气颗粒物重金属污染研究进展与趋势[J]. 地球与环境, 2019,47(3):385-396.
[23] Gu J W. A review on heavy metals in atmospheric suspended particles of China cities and its implication for future references[J]. Earth and Environment, 2019,47(3):385-396.
[24] Mikhailova E A, Goddard M A, Post C J, et al. Potential contribution of combined atmospheric Ca2+ and Mg2+ wet deposition within the continental U.S. to soil Inorganic carbon sequestration[J]. Pedosphere, 2013,23(6):808-814.
[25] 代杰瑞, 祝德成, 庞绪贵, 等. 济宁市近地表大气降尘地球化学特征及污染来源解析[J]. 中国环境科学, 2014,34(1):40-48.
[25] Dai J R, Zhu D C, Pang X G, et al. Geochemical characteristics and pollution sources identification of the near-surface atmosphere dust-fall in Jining City[J]. China Environmental Science, 2014,34(1):40-48.
[26] 邹本东, 徐子优, 华蕾, 等. 因子分析法解析北京市大气颗粒物PM10的来源[J]. 中国环境监测, 2007,23(2):79-85.
[26] Zou B D, Xu Z Y, Hua L, et al. Sources apportionment of atmospheric particles PM10 in Beijing by factor analysis[J]. Environmental Monitoring in China, 2007,23(2):79-85.
[27] 赵西强, 王增辉, 王存龙, 等. 济南市近地表大气降尘元素地球化学特征及污染评价[J]. 物探与化探, 2016,40(1):154-159.
[27] Zhao X Q, Wang Z H, Wang C L, et al. Geochemical characteristics and pollution assessment of near-surface atmospheric dust in Jinan[J]. Geophysical and Geochemical Exploration, 2016,40(1):154-159.
[28] Xing J W, Song J M, Yuan H M, et al. Atmospheric wet deposition of dissolved organic carbon to a typical anthropogenic-influenced semi-enclosed bay in the western Yellow Sea, China:Flux, sources and potential ecological environmental effects[J]. Ecotoxicology and Environmental Safety, 2019,182:109371.
pmid: 31252350
[29] 姚瑞珍, 张勇, 王亚良, 等. 黄石市大气降尘中重金属污染特征与评价[J]. 地球与环境, 2016,44(2):212-218.
[29] Yao R Z, Zhang Y, Wang Y L, et al. Distribution characteristics and risk assessment of heavy metals in atmospheric dustfall of Huangshi City, China[J]. Earth and Environment, 2016,44(2):212-218.
[30] 王明仕, 刘艳萍, 曹景丽, 等. 焦作市采暖期大气降尘重金属的分布特征和健康风险评估[J]. 地球与环境, 2018,46(1):59-65.
[30] Wang M S, Liu Y P, Cao J L, et al. Distribution characteristics and health risk assessment of heavy metals in atmospheric dust-fall in Jiaozuo City, Henan Province, China[J]. Earth and Environment, 2018,46(1):59-65.
[1] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[2] 赵辰, 孙彬彬, 周国华, 贺灵, 曾道明. 福建龙海杨梅生态地质适生模型研究与应用[J]. 物探与化探, 2021, 45(5): 1121-1129.
[3] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[4] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[5] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[6] 解庆锋, 周小果, 王振峰, 马振波, 李胜昌, 张得恩, 司法祯. 河南省土壤环境监测背景点位布设参考区域划分研究[J]. 物探与化探, 2021, 45(5): 1164-1170.
[7] 陶春军, 史春鸿, 张笑蓉, 管后春, 贾十军. 淮北平原覆盖区土壤采样密度及其环境质量研究——以1∶5万高炉集幅为例[J]. 物探与化探, 2021, 45(1): 200-206.
[8] 谢薇, 杨耀栋, 侯佳渝, 菅桂芹, 李国成, 赵新华. 多种评价方法应用于天津核桃主产区的土壤环境质量评价[J]. 物探与化探, 2021, 45(1): 207-214.
[9] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[10] 陈雪, 杨忠芳, 陈岳龙, 杨琼, 王磊, 韦雪姬. 广西中东部9县区农田土壤Se输入通量研究[J]. 物探与化探, 2020, 44(4): 820-829.
[11] 钟晓宇, 吴天生, 李杰, 郑国东, 卓小雄, 关东超, 王磊, 莫斌吉. 柳江流域沉积物重金属生态风险评价及来源分析[J]. 物探与化探, 2020, 44(1): 191-199.
[12] 刘道荣, 郑基滋, 占玄, 吴问丹. 临安山核桃主产区林地土壤重金属生态风险评价[J]. 物探与化探, 2019, 43(6): 1382-1388.
[13] 周亚龙, 郭志娟, 王成文, 陈杰, 彭敏, 成杭新. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366.
[14] 张钊熔, 段星星, 夏明哲. 白银东大沟水体和底泥中重金属污染评价[J]. 物探与化探, 2019, 43(3): 649-657.
[15] 吴永强, 李春亮, 段星星, 梁楠, 王翔, 李洚. 张掖—永昌地区农业地球化学分区[J]. 物探与化探, 2018, 42(6): 1296-1305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com