Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 550-558    DOI: 10.11720/wtyht.2020.1410
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
海底电缆电磁场分布模拟与分析
甘团杰1, 陈剑平1(), 杨玺1, 周庆东1, 曾亮2
1. 广东电网有限责任公司 江门供电局,广东 江门 510630
2. 中国能源建设集团 广东省电力设计研究院有限公司,广东 广州 510663
Modelling and analysis study of electromagnetic field distribution around submarine cable
Tuan-Jie GAN1, Jian-Ping CHEN1(), Xi YANG1, Qing-Dong ZHOU1, Liang ZENG2
1. Jiangmen Power Supply Bureau, Guangdong Electrifc Network Liability Co., Ltd., Jiangmen 510630, China
2. Guangdong Electric Power Design Institute Liability Co., Ltd., China Energy Resource Construction Group, Guangzhou 510663, China
全文: PDF(6274 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

海底电缆的探测和识别技术是海底电缆维护与建设中非常重要的研究内容。海底电缆布设于海底,在通电情况下产生电场和磁场,符合可控源电磁法探测理论。本文采用频率域可控源电磁法2.5维高精度有限元数值模拟算法对海底电缆模型进行模拟与分析研究,以水平地形和起伏地形海底电缆模型为基础,重点对海水层厚度和海底界面两种参数变化前后电磁场分布特征进行了模拟与分析。数值算例表明:磁场分量Hy对于海水层厚度非常敏感,厚度变化0.2 m时,变化前后Hy偏差可达5%,从而论证了采用可控源电磁法理论对于海底电缆的探测和识别可行。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘团杰
陈剑平
杨玺
周庆东
曾亮
关键词 海洋探测电磁场海底电缆数值模拟可控源电磁法    
Abstract

The detection and identification technology in the maintenance and construction of submarine cables has become a very important research content. In this paper, a 2.5-dimensional high-precision finite element numerical simulation algorithm of the frequency domain CSEM method was used to simulate and analyze the submarine cable model. Based on the horizontal terrain and undulating terrain submarine cable models, this study focused on the simulation and analysis of the characteristics of the electromagnetic field distribution with the changing of seawater layer thickness and the submarine interface. Numerical examples show that the magnetic field component Hy is very sensitive to the thickness of the seawater layer. When the thickness is changed by 0.2m, the Hy error anomaly amplitude can reach 5%, thus demonstrating that the CSEM theory is feasible for detection and identification of submarine cables.

Key wordsocean exploration    electromagnetic field    submarine cable    numerical simulation    controlled source electromagnetic method    finite element numerical simulation
收稿日期: 2019-08-26      出版日期: 2020-06-24
:  P631  
基金资助:南方电网集团科研发展项目“海底电缆监测技术研究及应用科技项目”(GDKJXM20172879)
通讯作者: 陈剑平
作者简介: 甘团杰(1970-),男,西安交通大学毕业,高级工程师,主要研究方向为高压电技术、电气设备检修及运行管理。Email: 13702207210@139.com
引用本文:   
甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
Tuan-Jie GAN, Jian-Ping CHEN, Xi YANG, Qing-Dong ZHOU, Liang ZENG. Modelling and analysis study of electromagnetic field distribution around submarine cable. Geophysical and Geochemical Exploration, 2020, 44(3): 550-558.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1410      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/550
Fig.1  y=0 m剖面电场、磁场数值解
Fig.2  y=100 m剖面电场、磁场数值解
Fig.3  y=100 m剖面地表测线数值解与解析解对比
Fig.4  水平地形海底电缆模型示意
Fig.5  水平地形算例一电磁场分量剖面
Fig.6  水平地形算例一海水层电磁场分量剖面
Fig.7  水平地形算例一与算例二Ex分量对比
Fig.8  水平地形算例一与算例二Hy分量对比
Fig.9  水平地形算例一与算例三Ex分量对比
Fig.10  水平地形算例一与算例三Hy分量对比
Fig.11  起伏地形海底电缆模型
Fig.12  起伏地形算例一海底电缆模型电磁场在xy方向的分量(计算区域)
Fig.13  起伏地形算例一z=0 m测线Hy分布
Fig.14  起伏地形算例二淤泥层顶界面
Fig.15  起伏地形算例二磁场分量Hy剖面
Fig.16  起伏地形算例二Hy归一化结果
Fig.17  起伏地形算例二不同层位磁场分量Hy归一化偏差分布
Fig.18  起伏地形算例三z=-1 m平面磁场分量Hy归一化偏差分布
[1] 罗深荣. 侧扫声纳和多波束测深系统在海洋调查中的综合应用[J]. 海洋测绘, 2003,23(1):22-24.
[1] Luo S R. Comprehensive utilization of side scan sonar and multi-beam sounding system in oceanographic research[J]. Ocean Mapping, 2003,23(1):22-24.
[2] 李家彪. 多波束勘测原理技术与方法[M]. 北京: 海洋出版社, 1999.
[2] Li J B. Multi-beam survey principle technology and method[M]. Beijing: Ocean Press, 1999.
[3] 钟献盛, 裴彦良. 应用磁力仪探测海底电缆方法的探讨[J]. 海洋科学, 2001,25(9):10-11.
[3] Zhong X S, PEI Y L. Discussion of the survey method of the sea bed cables using Magnetometer[J]. Marine Sciences, 2001,25(9):10-11.
[4] 张伟, 孙伯娜, 王朝, 等. 海底管线路由探测方法研究[J]. 港工技术, 2015,52(6):111-113.
[4] Zhang W, Sun B N, Wang C, et al. Study on seabed pipeline routing detection[J]. Port Engineering Technology, 2015,52(6):111-113.
[5] 岑贞锦, 蒋道宇, 张维佳, et al. 海底电缆检测技术方法选择分析[J]. 南方能源建设, 2017,4(3):85-96.
[5] Cen Z J, Jiang D Y, Zhang W J, et al. Analysis on selection of submarine cable detection technology[J]. Southern Energy Construction, 2017,4(3):85-96.
[6] 郝威, 周学军. 采用瞬变电磁法的海底光缆定位[J]. 光纤与电缆及其应用技术, 2005(1):20-22.
[6] Hao W, Zhou X J. Submarine optical cable positioning using transient electromagnetic method[J]. Optical Fiber and Cable and their Application Technology, 2005(1):20-22.
[7] 于波, 刘雁春, 边刚, 等. 海洋工程测量中海底电缆的磁探测法[J]. 武汉大学学报:信息科学版, 2006,31(5):454-457.
[7] Yu B, Liu Y C, Bian G, et al. Magnetism detecting method for seabed cable in marine engineering surveying[J]. Geomatics and Information Science of Wuhan Univers, 2006,31(5):454-457.
[8] Dalian R J. Magnetism detecting method for seabed cable in marine engineering surveying[J]. Geomatics & Information Science of Wuhan University, 2006,31(5):454-457.
[9] Yu B, Liu Y C, Zhai G J, et al. Magnetic detection method foe seabed cable in marine engineering surveying[J]. Geo-spatial Information Science, 2007,31(3):454-457.
[10] 高震, 汪洋, 郑新龙, 等. 基于海底电缆故障探测及维护的分析研究[J]. 电源技术应用, 2013(1):63.
[10] Gao Z, Wang Y, Zheng X L, et al. Analysis and research on fault detection and maintenance based on submarine cable[J]. Power Technology Application, 2013(1):63.
[11] 李晶. 海底电缆外部探测方法与应用浅析[J]. 水道港口, 2018,178(3):123-127.
[11] Li J. Analysis on method and application of submarine cable detection[J]. Journal of Waterway and Harbor, 2018,178(03):123-127.
[12] Cox C. Electromagnetic induction in the oceans and inferences on the constitution of the earth[J]. Geophys Surv, 1980,4(1-2):137-156.
doi: 10.1007/BF01452963
[13] Mitsuhata Y. 2-D electromagnetic modeling by finite-element method with a dipole-dipole source and topography[J]. Geophysics, 2000,65(2):465-475.
doi: 10.1190/1.1444740
[14] Li Y G, Dai S K. Finite element modelling of marines controlled-source electromagnetic responses in two-dimensional dipping anisotropic conductivity structures[J]. Geophysical Journal International, 2011,185(2):622-636.
doi: 10.1111/j.1365-246X.2011.04974.x
[15] 薛东川, 戴世坤. 频率域2.5维电磁测深有限元模拟中的吸收边界条件[J]. 中国石油大学学报:自然科学版, 2008,32(6):57-61.
[15] Xue D C, Dai S K. Absorbing boundary condition for simulation 2.5-D electromagnetic sounding in frequency domain by finite element method[J]. Journal of China University of Petroleum:Edition of Natural Sciences, 2008,32(6):57-61.
[16] Key K, Ovall J. A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling[J]. Geophysical Journal International, 2011,186(1):137-154.
doi: 10.1111/j.1365-246X.2011.05025.x
[17] 戴世坤, 王顺国, 张钱江, 等. 频率域可控源电磁法2.5D正反演[J]. 中国有色金属学报, 2013(9):2513-2523.
[17] Dai S K, Wang S G, Zhang Q J, et al. 2.5D forward and inversion of CSEM in frequency domain[J]. The Chinese Journal of Nonferrous Metals, 2013(9):2513-2523.
[18] Li Y, Key K . 2D marine controlled-source electromagnetic modeling: Part 1—An adaptive finite-element algorithm[J]. Geophysics, 2007,72(2):51-62.
[19] 汤文武, 柳建新, 叶益信, et al. 基于节点有限元与矢量有限元的可控源电磁三维正演对比[J]. 石油地球物理勘探, 2018,53(03):192-199.
[19] Tang W W, Liu J X, Ye Y X, et al. Comparison of 3D controlled-source electromagnetic forward modeling based on the nodal finite element and the edge-based finite element[J]. OGP, 2018,53(3):617-624.
[20] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[20] Xu S Z. The finite element method in geophysics[M]. Bejing: Science Press, 1994.
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[3] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[4] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[5] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[6] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
[7] 李斌, 冯奇坤, 张异彪, 黄福强. 海上OBC-OBN技术发展与关键问题[J]. 物探与化探, 2019, 43(6): 1277-1284.
[8] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[9] 刘黎, 章成广, 蔡明, 何洋, 滑玉琎, 刘玉. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6): 1333-1340.
[10] 杨天春, 梁竞, 程辉, 曹书锦, 董绍宇, 宫玉菲. 天然电场选频法的浅层地下水勘探效果与异常分析[J]. 物探与化探, 2018, 42(6): 1194-1200.
[11] 张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6): 1221-1227.
[12] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018, 42(5): 970-976.
[13] 冯牧群, 刘得军, 潘琦, 冯硕, 刘佳宁. 基于磁异常的平行管线数值模拟[J]. 物探与化探, 2018, 42(2): 405-411.
[14] 姜国庆, 黄敬军, 张大莲, 徐士银, 卢进添. 徐州地区全新世古河道地电特征研究[J]. 物探与化探, 2018, 42(2): 422-428.
[15] 裴发根, 何梅兴, 仇根根, 杜炳锐, 白大为. 青藏高原冻土区AMT探测天然气水合物采集试验[J]. 物探与化探, 2017, 41(6): 1113-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com