Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 406-411    DOI: 10.11720/wtyht.2020.1397
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
煤层发育条件下薄储层预测方法研究
杨雪1, 裴家学1, 何绍勇1, 蒋学峰1, 谢天寿2, 高建军1
1. 中石油辽河油田勘探开发研究院,辽宁 盘锦 124010
2. 中石油新疆油田勘探开发研究院,新疆 克拉玛依 834000
Research on thin reservoir prediction method in the coal seam distribution area
Xue YANG1, Jia-Xue PEI1, Shao-Yong HE1, Xue-Feng JIANG1, Tian-Shou XIE2, Jian-Jun GAO1
1. Exploration and Development Research Institute of Liaohe Oil Field CNPC, Panjin 124010, China
2. Exploration and Development Research Institute of Xinjiang Oil Field CNPC, Keramay 834000, China
全文: PDF(5202 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

玛湖凹陷在侏罗纪时期整体处于浅水沉积环境,湖盆宽缓、基底振荡,在凹陷西侧斜坡区沉积多套砂泥岩薄互层,易于形成岩性油气藏;该时期还沉积多套煤层,煤层的发育对下部地层的地震响应产生屏蔽作用,造成砂泥层的波阻抗无明显差异,无法进行常规的储层反演预测。通过测井曲线对岩性变化敏感性分析,采用密度和中子曲线共同构建拟声波曲线,使得该曲线削弱煤层影响,能够清晰地反映地层岩性的差异;并以此为约束条件进行拟声波地震反演,解决了该区薄储层预测的难题,取得较好的应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雪
裴家学
何绍勇
蒋学峰
谢天寿
高建军
关键词 玛西斜坡区煤层薄储层拟声波反演储层预测    
Abstract

There are multiple combinations of sandstone and mudstone interbeds and also plenty of coal seams in the middle-shallow strata of Mahu sag's slope zone, due to the slow slope background and shallow lake environment of water oscillation since Jurassic. In addition, the lithologic reservoir can be found in the zone, but the shielding effect of coal seam makes it impossible to predict the reservoir, due to the unclear response of the thin interbed from seismic and acoustic logs. Therefore, the wave impedance inversion cannot distinguish sandstone from mudstone clearly. In view of such a situation, the technique of Pseudo-acoustic curve reconstruction was used in this study. By analyzing multiple well logs, the density and neutron curves, which can weaken the influence of coal seam and reflect the characteristics of sandstone and mudstone interbeds, were selected to rebuild pseudo-acoustic curves and then perform inversion with the rebuilt curves, thus improving greatly the accuracy of reservoir prediction.

Key wordsMahu sag's slope zone    coal seam    thin-interbed sandstone    pseudo-acoustic inversion    reservoir prediction
收稿日期: 2019-08-14      出版日期: 2020-04-22
:  P631  
基金资助:中国石油天然气股份公司重大科技攻关项目(2017XPT-Y-B-0009)
作者简介: 杨雪 (1974-),女,汉族,新疆昌吉人,高级工程师,长期从事构造及储层特征研究工作。Email: 280277083@qq.com
引用本文:   
杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
Xue YANG, Jia-Xue PEI, Shao-Yong HE, Xue-Feng JIANG, Tian-Shou XIE, Jian-Jun GAO. Research on thin reservoir prediction method in the coal seam distribution area. Geophysical and Geochemical Exploration, 2020, 44(2): 406-411.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1397      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I2/406
Fig.1  玛湖凹陷区域构造纲要
岩 性 中 子 密度
/(g·cm-3)
时差
/(μs·ft-1)
纵波速度
/(m·s-1)
纵波阻抗
/(g·cm-3·m·s-1)
煤 层 0.30~0.64 1.36~2.32 90~125 2400~3300 3200~7600
泥 岩 0.27~0.51 1.67~2.63 75~88 3500~4100 5800~10800
储层砂岩 0.19~0.42 1.58~2.46 71~77 3900~4300 7200~10500
致密砂岩 0.16~0.33 2.45~2.62 59~68 4500~5200 11000~13600
Table 1  不同岩性的岩石物理参数与部分测井响应特征统计
Fig.2  M612井综合测井曲线
Fig.3  原始声波曲线(a)与拟声波曲线(b)地震合成记录对比
Fig.4  原始声波曲线反演剖面(a)与拟声波曲线反演剖面(b)对比
[1] 程志国, 胡婷婷, 瞿建华 , 等. 准噶尔盆地玛西地区致密砂砾岩优质薄储层预测[J]. 物探与化探, 2015,39(5):891-896.
[1] Cheng Z G, Hu T T, Qu J H , et al. High-quality thin reservoir prediction in tight sands of Maxi slope zone in Junggar Basin[J]. Geophysical and Geochemical Exploration, 2015,39(5):891-896.
[2] David C, Simon S . Tight gas geophysics; AVO inversion for reservoir characterization[J]. CSEG Recorder, 2010,35(5):28-35.
[3] 陈德元, 张保卫, 岳航羽 , 等. 基于特征曲线构建的地质统计反演在薄砂体预测中的应用[J]. 物探与化探, 2018,42(5):999-1005.
[3] Chen D Y, Zhang B W, Yue H Y , et al. The application of geostatistical inversion based on characteristic curve structuring technology to thin sand body reservoir prediction[J]. Geophysical and Geochemical Exploration, 2018,42(5):999-1005.
[4] Bosc H M, Mukfrji T, Gonzalez F F . Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review[J]. Geophysics, 2010,75(5):A165-A176.
[5] 国春香, 郭淑文, 朱伟峰 , 等. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018,42(3):594-599.
[5] Guo C X, Guo S W, Zhu W F , et al. Research and application of fluvial sand-shale thin interbedding prediction method[J]. Geophysical and Geochemical Exploration, 2018,42(3):594-599.
[6] 秦雪霏, 李巍 . 大牛地气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报:地球科学版, 2014,44(3):1048-1054.
[6] Qin X F, Li W . Research of identification and trimming of coal-bed interference in Daniudi gas field[J]. Journal of Jilin University:Earth Science Edition, 2014,44(3):1048-1054.
[7] 佘刚, 周小鹰, 王箭波 . 多子波分解与重构法砂岩储层预测[J]. 西南石油大学学报:自然科学版, 2013,35(1):19-27.
[7] She G, Zhou X Y, Wang J B . Prediction of sand reservoir with multi-wavelet seismic trace decomposition and reconstruction[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2013,35(1):19-27.
[8] 乔中林 . 彬长地区去除煤层对储层预测影响的方法[J]. 海洋地质前沿, 2018,34(11):66-71.
[8] Qiao Z L . The method to remove coal seam’s influence on oil reservoir prediction: a case from the binchang area[J]. Marine Geology Frontiers, 2018,34(11):66-71.
[9] 刘英辉, 黄导武, 段冬平 , 等. 煤层等时格架下中深层储层地震沉积学预测[J]. 沉积学报, 2018,36(5):957-968.
[9] Liu Y H, Huang D W, Duan D P , et al. Application of seismic sedimentology to the prediction of middle-deep sand body in coal-bearing isochronous stratigraphic framework[J]. Acta Sedimentologica Sinica, 2018,36(5):957-968.
[10] 刘俊州, 时磊, 董宁 , 等. 含煤薄储层提高分辨率处理技术及应用[J]. 石油物探, 2017,56(2):216-221.
[10] Liu J Z, Shi L, Dong N , et al. The processing technique of improving the resolution for the thin hydrocarbon reservoir with coal seam[J]. Geophysical Prospecting for Petroleum, 2017,56(2):216-221.
[11] 刘蕾, 陈中红 . 准噶尔盆地中拐凸起石炭系火山岩油气成藏特征[J]. 河南科学, 2018,36(8):364-370.
[11] Liu L, Chen Z H . The petroleum accumulation characteristics of Carboniferous Volcanics in Zhongguai Uplift Junggar Basin[J]. Henan Sciences, 2018,36(8):364-370.
[12] 吴孔友, 查明, 王绪龙 , 等. 准噶尔盆地构造演化与动力学背景再认识[J]. 地球学报, 2005,36(3):217-222.
[12] Wu K Y, Zha M, Wang X L , et al. Further researches on the tectonic evolution and dynamic setting of the Junggar basin[J]. Acta Geoscientica Sinica, 2005,36(3):217-222.
[13] 隋凤贵 . 准噶尔盆地西北缘构造演化及其与油气成藏的关系[J]. 地质学报, 2015,89(4):779-793.
[13] Sui F G . Tectonic evolution and its relationship with hydrocarbon accumulation in the NW margin of the Junggar basin[J]. Acta Geologica Sinica, 2015,89(4):779-793.
[14] 鲍志东, 刘凌, 张冬玲 , 等. 准噶尔盆地侏罗系沉积体系纲要[J]. 沉积学报, 2005,23(2):194-201.
[14] Bao Z D, Liu L, Zhang D L , et al. Depositional system frameworks of the jurassic in Junggar basin[J]. Acta Sedimentologica Sinica, 2005,23(2):194-201.
[15] 朱筱敏, 张义娜, 杨俊生 , 等. 准噶尔盆地侏罗系辫状河三角洲沉积体系[J]. 石油与天然气地质, 2008,29(2):244-251.
[15] Zhu X M, Zhang Y N, Yang J S , et al. Braided-delta depositional system frameworks of the jurassic in Junggar basin[J]. Oil & Gas Geology, 2008,29(2):244-251.
[16] 卢志远, 马世忠, 费繁旭 , 等. 扇三角洲前缘沉积相及其对单井产能影响分析——以玛湖坳陷玛18井区百口泉组为例[J]. 河南科学, 2018,36(8):1256-1261.
[16] Lu Z Y, Ma S Z, Fei F X , et al. Analysis on fan-delta front depositional facies and its effect on single well productivity—take Baikouquan Formation of well M18 for example in Mahu Sag[J]. Henan Sciences, 2018,36(8):1256-1261.
[17] 郑四连, 刘百红, 张秀容 , 等. 伽马拟声波曲线构建技术在储层预测中的应用[J]. 石油物探, 2006,45(3):256-261.
[17] Zhang S L, Liu B H, Zhang X R , et al. The application of GR pseudo-acoustic curve contruction technology in reservoir prediction in xiaohaotu[J]. GPP, 2006,45(3):256-261.
[18] 石磊, 王昌景 . 利用拟声波曲线进行高分辨率地震反演[J]. 西南石油学院学报, 2004,26(5):18-21.
[18] Shi L, Wang C J . Do high resolution inversion by using simulated ac curve[J]. Journal of Southwest Petroleum Institute, 2004,26(5):18-21.
[19] 付志方, 张君, 邢卫新 , 等. 拟声波构建技术在砂泥岩薄互层储层预测中的应用[J]. 石油物探, 2006,45(4):415-417.
[19] Fu Z F, Zhang J, Xing W X , et al. Application of quasi-acoustic constructing technique to reservoir prediction of thin interbed[J]. GPP, 2006,45(4):415-417.
[1] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[2] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[3] 郭建宏, 杜婷, 张占松, 肖航, 秦瑞宝, 余杰, 王灿. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3): 768-777.
[4] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[5] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[6] 郭建宏, 张占松, 张超谟, 周雪晴, 肖航, 秦瑞宝, 余杰. 用地球物理测井资料预测煤层气含量——基于斜率关联度—随机森林方法的工作案例[J]. 物探与化探, 2021, 45(1): 18-28.
[7] 臧子婧, 吴海波, 丁海, 张平松, 董守华. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
[8] 郭建宏, 张占松, 张超谟, 陈芷若, 张鹏浩, 汤潇, 秦瑞宝, 余杰. 基于灰色系统与测井方法的煤层气含量预测及应用[J]. 物探与化探, 2020, 44(5): 1190-1200.
[9] 王亚, 易远元, 王成泉, 王孟华, 杨洲鹏, 张红文, 王盛亮, 贾敬. 叠后反演技术在杨税务潜山裂缝孔隙型储层预测中的应用[J]. 物探与化探, 2020, 44(5): 1208-1214.
[10] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44(3): 573-581.
[11] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[12] 晋达, 杜浩坤, 孟凡冰, 秦广胜, 苏云, 李娜. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1): 50-58.
[13] 陈彦虎, 陈佳. 波形指示反演在煤层屏蔽薄砂岩分布预测中的应用[J]. 物探与化探, 2019, 43(6): 1254-1261.
[14] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[15] 梁亚林, 原文涛. 测井预测煤层气含量及分布规律——以山西省沁水煤田为例[J]. 物探与化探, 2018, 42(6): 1144-1149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com