Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 855-862    DOI: 10.11720/wtyht.2020.1362
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
天津蔬菜主产区土壤中镉的有效性及关键调控因子研究
谢薇1(), 杨耀栋1(), 侯佳渝2, 菅桂芹1, 李国成1, 赵新华1
1.天津市地质矿产测试中心,天津 300191
2.天津市规划和自然资源局地质事务中心,天津 300042
Availability and key regulator of cadmium in soil of main vegetable production areas in Tianjin
Wei XIE1(), Yao-Dong YANG1(), Jia-Yu HOU2, Gui-Qin JIAN1, Guo-Cheng LI1, Xin-Hua ZHAO1
1. Tianjin Geological Mineral Test Center,Tianjin 300191,China
2. Geological Center of Tianjin Planning and Natural Resources Bureau,Tianjin 300042,China
全文: PDF(1062 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在天津蔬菜主产区配套采集土壤与农作物样品,运用相关分析和主成分分析等方法对土壤中有效Cd的含量、影响因素及关键调控因子进行研究。结果表明:研究区土壤样品中Cd的含量范围为0.21×10-6~1.03×10-6,平均值为0.47×10-6,超过风险筛选值(GB15618-2018)的比例为28%;有效Cd的含量范围0.05×10-6~0.48×10-6,平均值为0.14×10-6。农作物样品中Cd含量均低于0.05×10-6,满足食品安全要求(GB2762-2017)。农作物中Cd含量与土壤中Cd含量、有效Cd含量分别呈极显著正相关关系(p<0.01)。土壤有效Cd含量与pH、CEC、黏粒含量呈负相关(p<0.01),与有效P含量呈正相关(p<0.01),而与有机质和Eh没有明显相关性。结合主成分分析及线性回归分析结果可以推断,土壤Cd含量是Cd生物有效性的主控因子。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢薇
杨耀栋
侯佳渝
菅桂芹
李国成
赵新华
关键词 天津菜地有效镉影响因素    
Abstract

Soil and crop samples were collected simultaneously from the main vegetable production areas of Tianjin. The concentration of available Cd, influence factors and key regulation factor were studied by correlation analysis and principal component analysis. The results show that the content of Cd in soil samples ranges from 0.21×10-6 to 1.03×10-6, with an average of 0.47×10-6, and the proportion exceeding the risk screening value (GB15618-2018) is 28%.The content of available Cd ranges from 0.05×10-6 to 0.48×10-6, with an average of 0.14×10-6. The Cd content in crop samples is lower than 0.05×10-6, which meet the food safety requirements (GB2762-2017). The content of Cd in crops is positively correlated with Cd and available Cd in soil (p<0.01). Available Cd content is negatively correlated with pH, CEC and clay content (p<0.01), positively correlated with available P content (p<0.01), but not with organic matter and Eh. Combined with principal component analysis and linear regression analysis, it can be inferred that Cd content is the dominant factor of available Cd in soil.

Key wordsTianjin    vegetable field    available Cd    influence factor
收稿日期: 2019-07-15      出版日期: 2020-08-28
:  P632  
基金资助:天津市财政资金项目“富硒土地地球化学特征及开发潜力研究”
通讯作者: 杨耀栋
作者简介: 谢薇(1987-),女,辽宁人,硕士,高级工程师,研究方向为地球化学。Email:Chinav2012@163.com
引用本文:   
谢薇, 杨耀栋, 侯佳渝, 菅桂芹, 李国成, 赵新华. 天津蔬菜主产区土壤中镉的有效性及关键调控因子研究[J]. 物探与化探, 2020, 44(4): 855-862.
Wei XIE, Yao-Dong YANG, Jia-Yu HOU, Gui-Qin JIAN, Guo-Cheng LI, Xin-Hua ZHAO. Availability and key regulator of cadmium in soil of main vegetable production areas in Tianjin. Geophysical and Geochemical Exploration, 2020, 44(4): 855-862.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1362      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/855
Fig.1  采样点位示意
农作物种类 最小值/10-6 最大值/10-6 平均值/10-6 标准差/10-6 样本量
青萝卜 0.003 0.020 0.010 0.006 11
菜花 0.001 0.004 0.002 0.001 5
苤蓝 0.003 0.004 0.003 0.000 5
芹菜 0.009 0.024 0.015 0.007 4
大白菜 0.006 0.009 0.007 0.001 3
青椒 0.006 0.013 0.010 0.005 2
玉米 0.003 0.004 0.003 0.000 5
扁豆角 0.005 1
豆角 0.001 1
莴笋 0.008 1
小白菜 0.006 1
紫菜头 0.002 1
Table 1  蔬菜中Cd含量统计
Fig.2  农作物中Cd含量与土壤中Cd含量和有效Cd含量的相关性
Fig.3  土壤中Cd含量与有效Cd相关性
Fig.4  土壤有效Cd与各理化指标相关性
主成分 特征值 贡献率/% 累积贡献率/%
1 3.634 45.43 45.43
2 1.560 19.49 64.92
3 1.023 12.79 77.71
4 0.601 7.51 85.22
5 0.502 6.28 91.50
6 0.443 5.54 97.04
7 0.177 2.21 99.25
8 0.060 0.76 100.00
Table 2  主成分分析特征及其贡献率
指标 F1(主成分1) F2(主成分2) F3(主成分3)
有效 Cd 0.847 -0.367 -0.063
全量Cd 0.911 -0.259 0.001
有机质 0.218 -0.123 0.813
CEC -0.204 0.910 -0.190
Eh -0.140 -0.093 0.859
pH -0.619 -0.109 -0.514
黏粒 -0.347 0.862 -0.013
有效 P 0.668 -0.293 0.125
Table 3  最大方差法旋转成分矩阵
Fig.5  各指标在主成分1和2上的载荷
[1] 谢薇, 杨耀栋, 侯佳渝. 天津某菜地土壤—蔬菜中硒与重金属含量特征及绿色富硒蔬菜筛选[J]. 环境化学, 2018,37(12):2790-2799.
[1] Xie W, Yang Y D, Hou J Y. Characteristics of selenium and heavy metals concentrations in soils and vegetables and screening of green seleniumn-enriched vegetables in a base of Tianjin[J]. Environmental Chemistry, 2018,37(12):2790-2799.
[2] Arnfalk P, Wasay S A, Tokunaga S. Comparative study of Cd, Cr, Hg, and Pb uptake by minerals and soil materials[J]. Water, Air and Soil Pollution, 1996,87(3):131-148.
[3] Impellitteri C A, Saxe J K, Cochran M, et al. Predicting the bioavailability of copper and zinc in soils: Modeling the partitioning of potential bioavailable copper and zinc from solid to soil solution[J]. Environmental Toxicology and Chemistry, 2003,22(6):1380-1386.
pmid: 12785597
[4] 陈怀满. 土壤中化学物质的行为与环境质量 [M]. 北京: 科学出版社, 2002:79-134.
[4] Chen H M. Behavior of chemical substances in soils and environmental quality [M]. Beijing: Science Press, 2002:79-134.
[5] 邓朝阳, 朱霞萍, 郭冰, 等. 不同性质土壤中镉的形态特征及其影响因素[J]. 南昌大学学报:工科版, 2012,34(4):341-346.
[5] Deng Z Y, Zhu X P, Guo B, et al. Distribution and influence factors of Cd speciation on th soil with different properties[J]. Journal of Nanchang University:Engineering & Technology, 2012,34(4):341-346.
[6] 袁波, 傅瓦利, 蓝家程, 等. 菜地土壤铅、镉有效态与生物有效性研究[J]. 水土保持学报, 2011,25(5):130-134.
[6] Yuan B, Fu W L, Lan J C, et al. Study on the available and bioavailability of lead and cadmium in soil of vegetable plantation[J]. Journal of Soil and Water Conservation, 2011,25(5):130-134.
[7] 张水勤, 王峰源, 姜慧敏, 等. 设施菜地土壤中速效磷是镉生物有效性的关键调控因子[J]. 农业环境科学学报, 2014,33(9):1721-1727.
[7] Zhang S Q, Wang F Y, Jiang H M, et al. Available phosphorus is a key regulator of cadmium phytoavailability in greenhouse soils[J]. Journal of Agro-Environment Science, 2014,33(9):1721-1727.
[8] 黄顺生, 华明, 金洋, 等. 南京郊区某菜地土壤镉污染水平及其来源调查[J]. 土壤通报, 2008,39(1):129-132.
[8] Huang S S, Hua M, Jin Y, et al. Investigation of cadmium pollution and its major sources in vegetable land in the suburb of Nanjing city[J]. Chinese Journal of Soil Science, 2008,39(1):129-132.
[9] 索琳娜, 刘宝存, 赵同科, 等. 北京市菜地土壤重金属现状分析与评价[J]. 农业工程学报, 2016,32(9):179-186.
[9] Suo L N, Liu B C, Zhao T K, et al. Evaluation and analysis of heavy metals in vegetable field of Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(9):179-186.
[10] 张怀志, 冀宏杰, 徐爱国, 等. 潍坊市菜地重金属调查与环境风险评价研究[J]. 生态环境学报, 2017,26(12):2154-2160.
[10] Zhang H Z, Ji H J, Xu A G, et al. Investigation and environmental risk assessment of heavy metal elements in vegetable farmland of Weifang city[J]. Ecology and Environmental Sciences, 2017,26(12):2154-2160.
[11] 贾锐鱼, 林友红, 陈一国, 等. 西安市近郊菜园蔬菜重金属现状调查及评价[J]. 西安科技大学学报, 2012,32(4):486-489.
[11] Jia R Y, Lin Y H, Chen Y G, et al. Analysis of heavy-metal contamination of vegetables in vegetable plot of Xi’an suburb[J]. Journal of Xi’an University of Science and Technology, 2012,32(4):486-489.
[12] 田效琴, 李卓, 刘永红. 成都平原农田镉污染情况及油菜镉吸收特征[J]. 农业环境科学学报, 2017,36(3):496-506.
[12] Tian X Q, Li Z, Liu Y H. Characteristics of cadmium uptake by rape grown in cadmium contaminated farmland on Chengdu plain[J]. Journal of Agro-Environment Science, 2017,36(3):496-506.
[13] 宫彦章, 刘月秀, 刘姝媛, 等. 广东省林地土壤有效态锌、镉含量及其与有机质和pH的关系[J]. 华南农业大学学报, 2011,32(1):15-18.
[13] Gong Y Z, Liu Y X, Liu S Y, et al. Available Zn and Cd contents in relation to pH and Organic matter in forest soils of Guangdong province[J]. Journal of South China Agricultural University, 2011,32(1):15-18.
[14] Kachenko A G, Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia[J]. Water, Air, and Soil Pollution, 2006,169(1-4):101-123.
[15] Wallace A, Berry W L. Dose-response curves for zinc, cadmium, and nickel in combinations of one, two, or three[J]. Soil Science, 1989,147(6):401-410.
[16] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005,20(4):539-543.
[16] Du C Y, Zu Y Q, Li Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005,20(4):539-543.
[17] 普锦成, 符娟林, 章明奎, 等. 土壤性质对水稻土中外源镉与铅生物有效性的影响[J]. 生态环境, 2008,17(6):2253-2258.
[17] Pu J C, Fu J L, Zhang M K, et al. Effects of soil properties on the bioavailability of added cadmium and lead in paddy soils[J]. Ecology and Environment, 2008,17(6):2253-2258.
[18] 李玉萍, 刘晓端, 宫辉力. 土壤中铅铜锌镉的吸附特性[J]. 岩矿测试, 2007,26(6):455-459.
[18] Li Y P, Liu X D, Gong H L. Adsorption characteristics of soils for lead, copper, zinc and cadmium[J]. Rock and Mineral Analysis, 2007,26(6):455-459.
[19] 陈江军, 刘波, 李智民, 等. 江汉平原典型场区土壤重金属赋存形态及其影响因素探讨[J]. 资源环境与工程, 2018,32(4):551-556.
[19] Chen J J, Liu B, Li Z M, et al. Soil heavy metal occurrence and its influencing factors in typical areas in Jianghan plain[J]. Resources Environment & Engineering, 2018,32(4):551-556.
[20] Kirkham M B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments[J]. Geoderma, 2006,137(1):19-32.
[21] 刘世亮, 崔海燕, 介晓磊, 等. 磷锌配施对镉污染石灰性土壤中磷锌镉有效性的影响[J]. 生态环境, 2008,17(2):623-626.
[21] Liu S L, Cui H Y, Jie X L, et al. Effect of combined application phosphorus and Zn on availability of P, Zn, Cd in Cd contaminated calcareous soil[J]. Ecology and Environment, 2008,17(2):623-626.
[22] 聂艳丽, 郑毅, 林克惠. 根分泌物对土壤中磷活化的影响[J]. 云南农业大学学报, 2002,17(3):281-286.
[22] Nie Y L, Zheng Y, Lin K H. Effect of root exudates on activation of phosphates in soils[J]. Journal of Yunnan Agricultural University, 2002,17(3):281-286.
[23] 余贵芬, 蒋新, 孙磊, 等. 有机物质对土壤镉有效性的影响研究综述[J]. 生态学报, 2002,22(5):682-688.
[23] Yu G F, Jiang X, Sun L, et al. A review for effect of organic substances on the availability of cadmium in soils[J]. Acta Ecologica Sinica, 2002,22(5):682-688.
[24] Almås Å R, McBride M B, Singh B R. Solubility and lability of cadmium and zinc in two soils treated with organic matter[J]. Soil Science, 2000,165(3):250-259.
[25] Jörg R, Svetlana A, Tina F, et al. Nickel in a serpentine-enriched fluvisol: redox affected dynamics and binding forms[J]. Geoderma, 2016,263:203-214.
[26] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018,31(10):1669-1676.
[26] Mao L C, Ye H. Influence of redox potential on heavy metal behavior in soils: a review[J]. Research of Environmental Sciences, 2018,31(10):1669-1676.
[27] Frohne T, Rinklebe J, Diaz bone R A, et al. Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony[J]. Geoderma, 2011,160(3-4):414-424.
[1] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[2] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[3] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[4] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[5] 谢薇, 杨耀栋, 侯佳渝, 菅桂芹, 李国成, 赵新华. 多种评价方法应用于天津核桃主产区的土壤环境质量评价[J]. 物探与化探, 2021, 45(1): 207-214.
[6] 牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
[7] 时章亮, 金立新, 廖超, 包雨函, 刘晓波, 邓欢, 徐克全. 四川雷波县重点耕地区土壤硒含量特征及其成因分析[J]. 物探与化探, 2020, 44(5): 1253-1260.
[8] 余飞, 张风雷, 张永文, 王锐, 王佳彬. 重庆典型农业区土壤硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(4): 830-838.
[9] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
[10] 肖高强, 宗庆霞, 向龙洲, 刀艳, 徐永强. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2): 412-418.
[11] 李朋飞, 陈富荣, 杜国强, 陶春军, 刘超, 刘坤. 安徽涡河沿岸土壤氟含量特征及其影响因素[J]. 物探与化探, 2020, 44(2): 426-434.
[12] 冯进, 赵冰, 张占松, 张超谟. 珠江口盆地惠州凹陷储层测井产能分级与识别方法[J]. 物探与化探, 2020, 44(1): 81-87.
[13] 谢薇, 杨耀栋, 侯佳渝, 李国成, 菅桂芹. 天津市蓟州区富硒土壤成因与土壤硒来源研究[J]. 物探与化探, 2019, 43(6): 1373-1381.
[14] 刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328.
[15] 潘永敏, 华明, 廖启林, 许书刚, 张于, 翟辉. 宜兴地区土壤pH值的分布特征及时空变化[J]. 物探与化探, 2018, 42(4): 825-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com