Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (1): 220-225    DOI: 10.11720/wtyht.2020.1338
     工程勘察 本期目录 | 过刊浏览 | 高级检索 |
输电杆塔下采空区电法探测电极系统设计
张来福1, 李士强2(), 刘国强2, 杨虹1, 田赟1, 李国栋1
1. 国网山西省电力公司电力科学研究院,山西 太原 030001
2. 中国科学院电工研究所,北京 100190
The design of electrode system for electrical detection of goaf under transmission tower
Lai-Fu ZHANG1, Shi-Qiang LI2(), Guo-Qiang LIU2, Hong YANG1, Yun TIAN1, Guo-Dong LI1
1. Shanxi Electric Power Research Institute, Taiyuan 030001, China
2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(2932 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采空区极易造成地面沉降威胁电网运行安全,检测地下采空区分布意义重大。传统采空区电法检测技术系统控制复杂,布线方式繁琐,所需传感器和电缆数量较多,测量数据量大,排布和移动测量效率低下,并不适合电力领域防控地下采空区危害使用。文中针对电力杆塔下采空区分布的特点,设计了采空区电法检测的电极系统,采用集中-—分布式检测方式,可有效减少电力杆塔下采空区检测的传感器和线缆数量,优化系统控制,精简有效检测数据量,提高采空区检测的效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张来福
李士强
刘国强
杨虹
田赟
李国栋
关键词 采空区检测电法探测电极控制测线排布    
Abstract

Goaf tends to cause land subsidence and threaten the safety of power grid operation. It is of great significance to detect the distribution of underground goaf. Traditional goaf electrical detection technology has complex control system and complicated survey line arrangement, needs many sensors and cables as well as large amounts of measurement data, and is characterized by inefficient layout and mobile measurement, and hence it is not suitable for the use of electric power field to prevent and control the hazards of underground goaf. In view of the distribution characteristics of goaf under power pole and tower, the authors designed an electrode system for goaf electrical detection. The centralized-istributed detection method can effectively reduce the number of sensors and cables for goaf detection under power pole and tower, optimize the system control, simplify the effective detection data and improve the efficiency of goaf detection.

Key wordsgoaf detection    electrical detection technology    electrode system    survey line
收稿日期: 2019-06-26      出版日期: 2020-03-03
:  TM933  
基金资助:国家电网公司科学技术项目(52053016000X);国家自然科学基金项目(51677181)
通讯作者: 李士强
作者简介: 张来福(1967-),男,工学博士,正高级工程师,研究方向为电力设备检测与成像。Email: zhanglaifu479@163.com
引用本文:   
张来福, 李士强, 刘国强, 杨虹, 田赟, 李国栋. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1): 220-225.
Lai-Fu ZHANG, Shi-Qiang LI, Guo-Qiang LIU, Hong YANG, Yun TIAN, Guo-Dong LI. The design of electrode system for electrical detection of goaf under transmission tower. Geophysical and Geochemical Exploration, 2020, 44(1): 220-225.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1338      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I1/220
Fig.1  四电极电法检测原理
Fig.2  输电杆塔下采空区检测问题
Fig.3  检测电极布置示意
Fig.4  电极系统原理框图
Fig.5  控制单元工作流程
Fig.6  测线选择单元的工作流程
Fig.7  继电器开关电路原理
Fig.8  锁存器结合译码器电路
Fig.9  电极控制箱
Fig.10  实验电阻网络
Fig.11  电阻网络测试结果示意
Fig.12  野外实验仪器
Fig.13  地下管道分布的二维剖面
[1] 张建强, 杨昆, 王予东 , 等. 煤矿采空区地段高压输电线路铁塔地基处理的研究[J]. 电网技术, 2006,30(2):30-34.
[1] Zhang J Q, Yang K, Wang Y D , et al. Research on foundation treatment of high voltage transmission towers erected above goaf of coal mine[J]. Power System Technology, 2006,30(2):30-34.
[2] 陈志梅, 袁广林, 宋康 , 等. 煤矿采动区高压输电线路交全性评估[J]. 中国电力, 2015,48(10):101-106.
[2] Chen Z M, Yuan G L, Song K , et al. Safety evaluation of high voltage transmission lines in coal mining areas[J]. China Electric Power, 2015,48(10):101-106.
[3] 任堂正, 杨俊杰, 楼志斌 , 等. 基于ZigBee的覆冰区杆塔倾斜在线监测系统设计[J]. 电测与仪表, 2016(23):127-133.
[3] Ren T Z, Yang J J, Lou Z B , et al. Design of online monitoring system of icing region tower tilt based on ZigBee[J]. Electrical Measurement and Instrument, 2016(23):127-133.
[4] 贾雷亮 . 采空区对架空输电线路的影响分析及其综合治理研究[D]. 北京:华北电力大学, 2012.
[4] Jia L L . Analysis of the influence of goaf on overhead transmission line and its comprehensive treatment[D]. Beijing:North China Electric Power University, 2012.
[5] 薛国强, 潘冬明, 于景邨 . 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(05):427-432.
[5] Xue G Q, Pan D M, Yu J C . Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018,33(05):427-432.
[6] 杨镜明, 魏周政, 高晓伟 . 高密度电阻率法和瞬变电磁法在煤田采空区勘查及注浆检测中的应用[J]. 地球物理学进展, 2014,29(1):362-369.
[6] Yang J M, Wei Z Z, Gao X W , et al. The application of the methods of high density resistivity method and transient electromagnetic to detecting coal mining goaf and to inspect grouting effect[J]. Progress in Geophysics, 2014,29(1):362-369.
[7] 陈龙, 任龙 . 基于瞬变电磁法的采空区探测[J]. 露天采矿技术, 2017,32(3):15-18.
[7] Chen L, Ren L . Goaf detect based on transient electromagnetic method[J]. Opencast Mining Technology, 2017,32(3):15-18.
[8] 刘爱华, 郑鹏 . 影响采空区精确探测关键因素的分析研究[J]. 采矿与安全工程学报, 2008(2):132-138.
[8] Liu A H, Zheng P . Analysis of key factors a ffecting the precision of goaf detection[J]. Journal of Mining & Safety Engineering, 2008(2):132-138.
[9] 王爱国, 马巍, 王大雁 . 高密度电法不同电极排列方式的探测效果对比[J]. 工程勘察, 2007(1):72-75.
[9] Wang A G, Ma W, Wang D Y . Comparison of detection effect of different electrode arrangements in high density electricity method[J]. Geotechnical Investigation and Surveying, 2007(1):72-75.
[10] 刘海飞 . 高密度电阻率法数据处理方法研究[D]. 长沙:中南大学, 2004.
[10] Liu H F . Research on data processing method of high density resistivity method[D]. Changsha:Central South University, 2004.
[11] 张丽华, 潘保芝, 单刚义 , 等. 水槽模型设计及视电阻率曲线测量[J]. 实验技术与管理, 2019,36(3):63-65.
[11] Zhang L H, Pan B Z, Shan G Y , et al. Design of sink model and measurement of apparent resistivity curve[J]. Experimental Technology and Management, 2019,36(3):63-65.
[12] 郭秀军, 王兴泰 . 用高密度电阻率法进行空洞探测的几个问题[J]. 物探与化探, 2001,25(4):306-311.
[12] Guo X J, Wang X T . Some problems in the application of high density resistivity method to cavity exploration[J]. Geophysical and Geochemical Exploration, 2001,25(4):306-311.
[13] 王士党, 杨冲, 钟声 . 采空区探测方法的选择[J]. 煤炭技术, 2015,34(9):225-228.
[13] Wang S D, Yang C, Zhong S . Selection of detection methods in goaf[J]. Coal Technology, 2015,34(9):225-228.
[14] 张来福, 李士强, 刘国强 , 等. 基于扩频编码的电磁探测系统研究[J]. 电工技术学报, 2018,33(S2):263-269.
[14] Zhang L F, Li S Q, Liu G Q , et al. Research on electromagnetic detection system for spread spectrum code[J]. Transactions of China Electrotechnical Society, 2018,33(S2):263-269.
[15] 房俊龙, 吕洪圣, 赵朝阳 , 等. 基于物联网技术的输电杆塔倾斜监测系统设计[J]. 电测与仪表, 2015,52(1):111-114.
[15] Fang J L, Lv H S, Zhao C Y , et al. Tilt monitoring system of transmission line towers based on the internet of things technology[J]. Electrical Measurement and Instrument, 2015,52(1):111-114.
[16] 巫永忠 . 地面沉降地质灾害的原因与防治方法[J]. 西部资源, 2018,86(5):108-109.
[16] Wu Y Z . Causes and prevention methods of geological hazards caused by land subsidence[J]. Western Resources, 2018,86(5):108-109.
[17] 白晋锋 . 采煤地面塌陷的影响因素的分析[J]. 山西煤炭, 2018,38(1):9-12.
[17] Bai J F . Influencing factors of ground collapse induced by coal mining[J]. Shanxi Coal, 2018,38(1):9-12.
[1] 林希仲. 井—地直流电法在岩溶地基探测中的应用[J]. 物探与化探, 2016, 40(3): 619-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com