Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 372-380    DOI: 10.11720/wtyht.2020.1300
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于构造导向滤波的高斯束层析速度建模方法及其应用
郑浩1, 蔡杰雄1, 王静波2
1. 中国石化石油物探技术研究院,江苏 南京 211103
2. 中国石化勘探分公司,四川 成都 610041
Gaussian beam tomography with structure-filtering and its applications
Hao ZHENG1, Jie-Xiong CAI1, Jing-Bo WANG2
1. Sinopec Geophysical Research Institute,Nanjing 211103,China
2. Sinopec Exploration Company,Chengdu 610041,China
全文: PDF(7724 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高斯束层析速度建模方法利用高斯束传播算子计算层析核函数,能够提高速度模型反演的精度与稳定性,但尚未引入地质先验信息有时会导致反演结果缺乏地质意义。基于此,通过引入预条件模型正则化算子,推导得到构造导向滤波约束下的高斯束层析速度建模方法,该方法的关键是构造导向滤波算子的构建。本文通过地震剖面计算构造的结构张量,利用各向异性光滑算子加入地质构造特征作为反演的正则化约束条件。该方法完全基于数据驱动,实现了对层析反演的“软约束”,既缓解层析反演求解的多解性,同时又提高反演分辨率,得到更加符合地质认识的高精度速度模型。数值模拟实验及实际数据应用验证了构造导向滤波下的高斯束层析速度建模的有效性与实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑浩
蔡杰雄
王静波
关键词 高斯束层析速度建模构造导向滤波结构张量正则化约束    
Abstract

Gaussian beam tomography uses the Gaussian beam operator to compute the travel-time tomographic kernel function instead of the conventional ray tomographic kernels,which can improve the accuracy and stability of velocity building.However,the absence of prior geological information sometimes leads to the lack of geological understanding of the results.On such a basis,by introducing the preconditioned model regularization operator,a method of Gaussian beam tomography velocity building under the constraint of structure-guided filter is derived,whose key is to construct the structure-guided filter operator.In this paper,structure tensors were calculated by seismic profiles,and geological structure features were introduced by anisotropic diffusion smoothing operators as regularization constraints for inversion.This method is entirely data-driven and achieves the "soft constraint" of tomographic inversion,which not only reduces the issue of multiple solutions of inversion but also improves the inversion resolution,and hence can obtain a reasonable velocity model with geological recognition.The validity and practicability of the Gaussian beam tomography velocity building with structure-guided filtering were verified by its application to synthetics and practical data.

Key wordsGaussian beam tomography    velocity building    structure-guided filter    structure tensors    regularization
收稿日期: 2019-06-03      出版日期: 2020-04-22
:  P631.4  
基金资助:国家重点研发计划项目(2017ZX05036005-006)
作者简介: 郑浩(1991-),男,中国石化石油物探技术研究院,主要从事地球物理反演与Q值建模、智能化地震资料处理等研究工作。Email:zhenghao.swty@sinopec.com
引用本文:   
郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
Hao ZHENG, Jie-Xiong CAI, Jing-Bo WANG. Gaussian beam tomography with structure-filtering and its applications. Geophysical and Geochemical Exploration, 2020, 44(2): 372-380.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1300      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I2/372
Fig.1  深度域高斯束层析反演核函数
Fig.2  地震切片(a)及剖面(b)计算得到的结构张量
Fig.3  各向同性(a)和各向异性(b)的结构张量算子
Fig.4  构造导向滤波前(a)后(b)对比,可同时加强层位与断层特征
Fig.5  理论地质模型(速度值)及反演结果
a—理论模型;b—初始模型;c—常规高斯束层析反演结果;d—构造导向滤波高斯束层析反演结果
Fig.6  模型正演的单炮记录
Fig.7  反演结果单道对比分析
a—抽取模型中心道;b—真实值、常规平滑正则化约束层析反演结果及构造约束正则化层析反演结果单道对比
Fig.8  某实际数据深度域常规高斯束层析建模(a)及构造导向滤波高斯束层析建模(b)结果对比
Fig.9  速度更新量(a)与剩余谱(b)联合质控
Fig.10  速度更新前(a)后(b)CIG道集
Fig.11  某实际数据PSDM成像结果
a—常规高斯束层析反演对应的偏移结果;b—构造导向滤波高斯束层析反演对应的偏移结果
[1] Brillatz C, Vigée L, Coléou T, et al. Getting closer to the geology contrasts by starting stratigraphic inversion with velocity models from new tomographic methods [C]//SEG Technical Program Expanded Abstracts, 2014: 4763-4767.
[2] 王学军, 于宝利, 赵小辉 , 等. 油气勘探中“两宽一高”技术问题的探讨与应用[J]. 中国石油勘探, 2015,20(5):41-53.
[2] Wang X J, Yu B L, Zhao X H , et al. Development and application of “ 2W1H” technique in oil and gas exploration[J]. China Petroleum Exploration, 2015,20(5):41-53.
[3] Claerbout J F . Fundamentals of geophysical data processing[M]. London et al:Blackwell, 1985.
[4] Woodward M J . Wave-equation tomography[J]. Geophysics, 1992,57(1):15-26.
[5] Jocker J, Spetzler J, Smeulders D , et al. Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves[J]. Geophysics, 2006,71(6):T167-T177.
[6] De Hoop M V, van Der Hilst R D . On sensitivity kernels for ‘wave-equation’ transmission tomography[J]. Geophysical Journal International, 2005,160(2):621-633.
[7] Semtchenok N M, Popov M M, Verdel A R. Gaussian beam tomography [C]//71st EAGE Conference and Exhibition Incorporating SPE EUROPEC 2009,2009.
[8] 王华忠, 冯波, 王雄文 , 等. 地震波反演成像方法与技术核心问题分析[J]. 石油物探, 2015,54(2):115-125.
[8] Wang H Z, Feng B, Wang X W , et al. Analysis of seismic inversion imaging and its technical core issues[J]. Geophysical Prospecting for Petroleum, 2015,54(2):115-125.
[9] Vasco D W, Peterson Jr J E, Majer E L .Beyond ray tomography:Wavepaths and Fresnel volumes[J]. Geophysics, 1995,60(6):1790-1804.
[10] Yomogida K . Fresnel zone inversion for lateral heterogeneities in the Earth[J]. Pure and Applied Geophysics, 1992,138(3):391-406.
[11] Popov M M, Semtchenok N M, Popov P M, et al. Reverse time migration with Gaussian beams and velocity analysis applications [C]//70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008,2008.
[12] Popov M M, Semtchenok N M, Popov P M , et al. Depth migration by the Gaussian beam summation method[J]. Geophysics, 2010,75(2):S81-S93.
[13] 刘玉柱, 丁孔芸, 董良国 . 初至波走时层析成像对初始模型的依赖性[J]. 石油地球物理勘探, 2010,45(4):502-511.
[13] Liu Y Z, Ding K Y, Dong L G . The dependence of first arrival travel time tomography on initial model[J]. OGP, 2010,45(4):502-511.
[14] 李辉, 王华忠, 刘守伟 . 基于高斯束的速度层析方法研究[J]. 石油物探, 2017,56(1):116-125.
[14] Li H, Wang H Z, Liu S W . A velocity tomography algorithm based on Gaussian beam[J]. Geophysical Prospecting for Petroleum, 2017,56(1):116-125.
[15] 蔡杰雄, 方伍宝, 杨勤勇 . 高斯束深度偏移的实现与应用研究[J]. 石油物探, 2012,51(5):469-475.
[15] Cai J X, Fang W B, Yang Q Y . Realization and application of Gaussian beam depth migration[J]. Geophysical Prospecting for Petroleum, 2012,51(5):469-475.
[16] 管文胜, 段文胜, 查明 , 等. 利用基于模型的层析速度反演进行低幅度构造成像[J]. 石油地球物理勘探, 2017,52(1):87-93.
[16] Guan W S, Duan W S, Zha M , et al. Low-relief structural imaging with model-based tomographic velocity inversion[J]. OGP, 2017,52(1):87-93.
[17] 徐嘉亮, 周东红, 贺电波 , 等. 高精度深度域层析速度反演方法[J]. 石油地球物理勘探, 2018,53(4):737-744.
[17] Xu J L, Zhou D H, He D B , et al. High-precision velocity tomography inversion in the depth domain[J]. OGP, 2018,53(4):737-744.
[18] 蔡杰雄, 王华忠, 陈进 , 等. 基于高斯束传播算子的成像域走时层析成像方法[J]. 地球物理学报, 2017,60(9):3539-3554.
[18] Cai J X, Wang H Z, Chen J , et al. Traveltime tomography in the image domain based on the Gaussian-beam-propagator[J]. Chinese Journal of Geophysics, 2017,60(9):3539-3554.
[19] 刘玉柱, 董良国, 朱金平 . 菲涅耳体地震层析成像分辨率研究[J]. 地球物理学报, 2011,54(9):2338-2347.
[19] Liu Y Z, Dong L G, Zhu J P . Research on the seismic resolution of Fresnel volume tomography[J]. Chinese Journal of Geophysics, 2011,54(9):2338-2347.
[20] Hale D . Structure-oriented smoothing and semblance[J]. CWP Report, 2009,635:261-270.
[1] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[2] 徐蔚亚. 关于浮动基准面与起伏地表面的讨论[J]. 物探与化探, 2021, 45(1): 95-101.
[3] 彭海龙, 赫建伟, 任婷, 邓盾, 江凡, 王瑞敏, 张文祥. 基于地质构造约束的3D速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018, 42(3): 537-544.
[4] 薛花, 杜民, 文鹏飞, 张宝金, 张如伟. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[5] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3): 535-541.
[6] 韩翀, 陈明江, 赵辉, 曹博超, 李金玺, 尹晓贺. 现代体属性分析技术在风化壳气藏勘探中的应用——以苏里格气田桃7区块马五13段为例[J]. 物探与化探, 2016, 40(3): 445-451.
[7] 白雪, 李振春, 张凯, 宋翔宇, 杨国权, 尚江伟. 基于井数据约束的高精度层析速度反演[J]. 物探与化探, 2015, 39(4): 805-811.
[8] 李燕. 盐丘构造成像速度建模及逆时偏移关键参数优选[J]. 物探与化探, 2015, 39(3): 537-544.
[9] 段云卿, 覃天, 杨文军, 高海燕. 叠前偏移方法在辽河油田大民屯地区的应用[J]. 物探与化探, 2008, 32(4): 438-441.
[10] 李振春, 穆志平, 张建磊, 张凯, 王延光, 陈世军. 共聚焦点道集偏移速度建模[J]. 物探与化探, 2003, 27(5): 403-406,410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com