Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (1): 99-106    DOI: 10.11720/wtyht.2020.1294
     地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地球物理信息和控矿构造研究在乌克兰米丘林铀矿床中的应用
王永飞, 李宝新(), 曹云, 刘晨阳
四川省核工业地质调查院,四川 成都 610053
The application of geophysical information and ore-controlling structures to the Michurinskoye uranium deposit, Ukraine
Yong-Fei WANG, Bao-Xin LI(), Yun CAO, Chen-Yang LIU
Sichuan Institute of Nuclear Geology, Chengdu 610053,China
全文: PDF(2817 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

乌克兰中央铀成矿省米丘林铀矿床地表覆盖严重,为了对已知矿体建立快速有效的评价体系,本次采用土壤氡气、伽马能谱等放射性探测方法,结合已有区域重磁、地震、测井等资料进行综合对比分析研究,总结了米丘林铀矿床的地质—地球物理找矿预测模型,构建了热液型铀矿深部铀成矿信息识别技术和深部铀资源探测评价综合技术体系,为解决国内相似矿区及危机矿山接替资源找矿中的快速评价技术问题提供一定的参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永飞
李宝新
曹云
刘晨阳
关键词 土壤氡气、γ能谱、重磁;控矿构造乌克兰米丘林铀矿床    
Abstract

Based on the survey of soil radon gas and gamma spectrum in the Michurinskoye uranium deposit in Central Ukrainian U province, and the comprehensive comparative analysis of the existing regional gravity, magnetic, seismic and logging data, the authors used various geophysical exploration techniques to evaluate the existing orebodies rapidly and effectively. On the basis of the analysis and study of ore-controlling structures in tectonic alteration zones, the authors constructed the identification technology of deep uranium metallogenic information and the comprehensive technology of deep uranium resources exploration and evaluation for hydrothermal uranium deposits, and provided theoretical guidance for the prospecting of alternative resources in similar mining areas and crisis mines.

Key wordssoil radon    γ spectrum;    gravity and magnetism    ore-controlling structure    Ukraine    Michurinskoye uranium deposit
收稿日期: 2019-05-27      出版日期: 2020-03-03
:  P631  
基金资助:科技部国家重点研发计划项目“乌克兰中部基洛沃格勒地块深部铀资源勘探关键技术与装备合作研究”(2016YFE0206300)
通讯作者: 李宝新
作者简介: 王永飞(1982-),男,本科,高级工程师,主要从事铀矿勘查和研究工作。Email: 370759859@qq.com
引用本文:   
王永飞, 李宝新, 曹云, 刘晨阳. 地球物理信息和控矿构造研究在乌克兰米丘林铀矿床中的应用[J]. 物探与化探, 2020, 44(1): 99-106.
Yong-Fei WANG, Bao-Xin LI, Yun CAO, Chen-Yang LIU. The application of geophysical information and ore-controlling structures to the Michurinskoye uranium deposit, Ukraine. Geophysical and Geochemical Exploration, 2020, 44(1): 99-106.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1294      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I1/99
Fig.1  乌克兰前寒武纪地盾地质构造及次级断块组成(a)和铀矿床分布图(b)[4]
1—奥长环斑深成花岗岩(KN-科尔松-新和平城岩体,Kr-克罗斯廷岩体);2—花岗深成岩(NK-新乌克兰岩体);3—剪切带:①—NK剪切带;②—GT剪切带;③—KK剪切带;④—OP剪切带;4—基性岩脉;5—块间(断块)断裂;6—主断层/背斜;7—交代型铀矿床;8—脉岩型铀矿床;9—沉积岩型;10—环斑花岗岩(KN);11—镁铁质-超镁铁质岩;12—微斜长石花岗岩(NK);13—因古尔-因古列茨单元变质岩(片麻岩等);14—康克斯克-维克霍夫采夫单元岩石(角闪岩、富铁岩石);15—克里沃罗格单元(含镁铁岩);16—第聂伯-萨克萨甘单元(斜长花岗岩、混合岩等);断裂:F1—布格—米罗诺夫块间断裂;F2—克里沃罗格—克列门丘格块间断裂,f1—安诺夫—兹韦尼哥罗德断层,f2—基洛沃格勒断层;f3—苏博京—马舒林断层;f4—诺科斯坦斯尼卡断层;f5—格洛斯托克断层,f6—阿达巴什断层
区位 地层单元 厚度/m 岩性
因古尔(I)
断块东段
因古尔-
因古列茨
罗迪奥尼夫卡
Rodionivka
2200 带黑云母片岩的石英岩。在博诺马带夹层,顶部有大理石、黑云母和角闪石—黑云母片麻岩和片岩中间层
阿尔茨米夫斯克
Artcmivsk
200 含黑云母和黑云母闪石片麻岩和片岩夹层的含磁铁矿石英岩
泽莲娜里奇卡
Zelena Richka
180 正角闪岩、角闪石和角闪石—黑云母正棱岩和杂岩体,底部有石英岩夹层的石英岩和矽线石黑云母,石榴石云母片岩,顶部有石墨或滑石—碳酸盐片岩夹层
因古尔(I)
断块
因古尔—
因古列茨
切切利夫卡
Chechelivka
>2000 黑云母,通常为石榴子石片麻岩和含角闪石、片状堇青石和硅锰矿—堇青石片麻岩夹层的片岩
斯帕西夫卡
Spasivfca
>3000 黑云母—辉石、黑云母—角闪石—辉石局部磁铁矿片麻岩、片岩、黑云母、石墨黑云母和堇青石黑云母片麻岩和角闪岩互层
Table 1  乌克兰中央地盾因古尔断块和因古尔断块东段中古元古代岩石地层单位的对比[4]
Fig.2  米丘林矿床中段平剖面简图及主矿带三维示意模型
1—新生代覆盖物;2—片麻岩;3—花岗岩;4—变正长岩;5—钠长岩;6—糜棱岩;7—伟晶岩;8—断层;9—矿体
Fig.3  米丘林矿床钠交代蚀变分带
1—新生代覆盖物;2—片麻岩;3—花岗岩;4—变正长岩;5—钠长岩;6—糜棱岩;7—断层;8—矿体;9—蚀变分带
Fig.4  乌克兰中部基洛沃格勒铀成矿区重磁特征
Fig.5  米丘林铀矿床土壤氡气剖面
1—新生代覆盖物;2—片麻岩;3—花岗岩;4—变正长岩;5—钠长岩;6—糜棱岩;7—断层;8—矿体
岩石名称 U/10-6 Th/10-6 K/10-6 ∑/10-6 Th/U 备注
混合花岗岩 6.82 47.36 4.84 45.61 6.94 围岩
混合花岗岩 4.13 37.45 5.12 38.83 9.07 围岩
片麻岩 3.33 28.39 3.71 31.16 8.53 围岩
中粗粒花岗岩 5.58 13.44 7.16 35.46 2.41 围岩
赤铁矿化—磁铁矿混合岩 5.65 27.90 5.38 37.93 4.94 围岩
中粒黑云母花岗岩 7.05 58.96 6.05 53.33 8.36 围岩
角闪岩 17.43 18.49 1.90 36.21 1.06 基性岩脉
灰白色钠长岩 29.76 13.11 1.88 48.28 0.44 近矿围岩
角闪岩 28.39 11.85 1.86 46.66 0.42 基性岩脉
赤红色钠长岩 112.01 11.99 0.61 120.77 0.11 矿化
钠长岩 211.42 18.82 0.64 232.14 0.09 矿化
赤红色钠长岩 138.19 17.94 1.02 154.24 0.13 矿化
钠长岩 202.11 38.49 2.73 244.62 0.19 矿化
Table 2  米丘林矿床地表及深部围岩与含矿岩石伽马能谱测量结果
Fig.6  米丘林铀矿床地质—地球物理找矿模型
[1] Franz J D . Uranium deposits of the world: Europe[M]. Germany:Springer-Verlag Berlin Heidelberg, 2016: 1-3, 618-672.
[2] Fairclough M, Tulsidas H . Geological classification of Uranium deposits and description of selected examples[R]. Iaea Tecdoc Series, 2018(1842):130-170.
[3] Fairclough M, Tulsidas H . World distribution of Uranium deposits (UDEPO) 2016 edition[R]. Iaea Tecdoc Series, 2018(1843):14-28.
[4] Michel C, Alexander E, Julien M , et al. Uranium deposits associated with Na-metasomatism from central Ukraine:A review of some of the major deposits and genetic constraints[J]. Ore Geology Reviews, 2012,44:82-106.
[5] 胡宝群, 王倩, 邱林飞 , 等. 相山矿田邹家山铀矿床碱交代矿化蚀变岩地球化学[J]. 大地构造与成矿学, 2016,40(2):377-385.
[5] Hu B Q, Wang Q, Qiu L F , et al. Geochemistry of alkali metasomatized rocks of Zoujiashan Uranium ore deposit in Xiangshan ore field[J]. Geotectonica et Metallogenia, 2016,40(2):377-385.
[6] 谭玉清 . 3702铀矿床碱交代岩特征及成矿机理[J]. 世界核地质科学, 2018,35(3):137-142.
[6] Tan Y Q . Characteristics and mineralization mechanism of alkali metasomatite in Uranium Deposit 3702[J]. World Nuclear Geoscience, 2018,35(3):137-142.
[7] 卓维荣 . 乌克兰钠交代岩型铀矿床地质特征[J]. 国外铀矿地质, 1994,11(3):211-220.
[7] Zhuo W R . Geological characteristics of sodium metasomatism type U deposit in Ukraine[J]. World Nuclear Geoscience, 1994,11(3):211-220.
[8] 宋振涛, 祁程, 韩栋昱 , 等. 芨岭地区铀矿地质—地球物理特征研究[J]. 物探与化探, 2018,42(5):909-916.
[8] Song Z T, Qi C, Han D Y , et al. A study of geological-geophysicsical characteristics of uranium deposits in Jiling pluton[J]. Geophysical and Geochemical Exploration, 2018,42(5):909-916.
[9] 李怀渊, 江民忠, 陈国胜 , 等. 我国航空放射性测量进展及发展方向[J]. 物探与化探, 2018,42(4):645-652.
[9] Li H Y, Jiang M Z, Chen G S , et al. The brilliant achievements and technological innovation of airborne radioactivity survey in China[J]. Geophysical and Geochemical Exploration, 2018,42(4):645-652.
[10] 赵敏, 盛勇, 戚良刚 . 高精度重磁测量在覆盖区找矿中的应用—以无为县蔚山铁铜矿预查为例[J]. 物探与化探, 2019,43(6):1211-1216.
[10] Zhao M, Sheng Y, Qi L G . The application of high precision gravity and magnetic survey to prospecting in coverage area:A case study of the reconnaissance of Weishan iron and copper deposit in Wuwei County[J]. Geophysical and Geochemical Exploration, 2019,43(6):1211-1216.
[11] 张虹, 周能, 邓肖丹 , 等. 国外航空重力测量与数据处理技术最新进展[J]. 物探与化探, 2019,43(5):1015-1022.
[11] Zhang H, Zhou N, Deng X D , et al. The latest progress in air gravity measurement and data processing technology abroad[J]. Geophysical and Geochemical Exploration, 2019,43(5):1015-1022.
[12] 王振亮, 邓友茂, 孟银生 , 等. 综合物探方法在维拉斯托铜多金属矿床北侧寻找隐伏矿体的应用[J]. 物探与化探, 2019,43(5):958-965.
[12] Wang Z L, Deng Y M, Meng Y S , et al. The application of integrated geophysical prospecting method to the prospecting for concealed orebodies in the northern area of the Weilasituo copper polymetallic deposit[J]. Geophysical and Geochemical Exploration, 2019,43(5):958-965.
[13] 刘金兰, 赵斌, 王万银 , 等. 南岭于都—赣县矿集区银坑示范区重磁资料探测花岗岩分布研究[J]. 物探与化探, 2019,43(2):223-233.
[13] Liu J L, Zhao B, Wang W Y , et al. A study of the distribution of granite detected by gravity and magnetic data in Yinkeng Demonstration Area of Nanling Yudu-Ganxian ore concentration area[J]. Geophysical and Geochemical Exploration, 2019,43(2):223-233.
[14] 刘成东, 张爱, 钟鹏程 , 等. 粤北诸广矿区碱交代岩岩石化学和矿物化学特征及其与铀成矿关系[J]. 地质与勘探, 2010,46(1):33-40.
[14] Liu C D, Zhang A, Zhong P C , et al. The rock and mineral chemical characteristics of alkaline rocks in Zhuguang mining area of Northern Guangdong and its relationship with uranium mineralization[J]. Geology and Exploration, 2010,46(1):33-40.
[15] 佟国元, 刘宪春, 沈步威 . 辽宁连山关地区铀成矿地质条件及找矿方向[J]. 科技创新导报, 2012,1:11-13.
[15] Tong G Y, Liu X C, Shen B W . Geological conditions and prospecting direction of uranium mineralization in Lianshanguan area, Liaoning Province[J]. Science and Technology Innovation Herald, 2012,1:11-13.
[16] 辛存林, 安国堡, 孙现辉 , 等. 龙首山成矿带207铀矿床矿化特征和外围铀成矿潜力分析[J]. 地质科技情报, 2013,32(3):125-134.
[16] Xin C L, An G B, Sun X H , et al. Mineralization characteristics of Uranium deposit No.207 in Longshoushan metaliogenetic belt and the metallogenic potential of its peripheral area[J]. Geological Science and Technology Information, 2013,32(3):125-134.
[17] 赵如意, 陈云杰, 武彬 , 等. 甘肃龙首山芨岭地区钠交代型铀矿成矿模式研究[J]. 地质与勘探, 2013,49(1):67-74.
[17] Zhao R Y, Chen Y J, Wu B , et al. A metallogenic model of the sodic metasomatic type uranium deposit in the JiLing area of Longshoushan,Gasu Province[J]. Geology and Exploration, 2013,49(1):67-74.
[18] 赵如意, 姜常义, 陈旭 , 等. 甘肃省龙首山成矿带中段钠长岩脉地质特征及其与铀矿化关系研究[J]. 地质与勘探, 2015,51(6):1069-1078.
[18] Zhao R Y, Jiang C Y, Chen X , et al. Geological features of al-bitite veins and its relationship with uranium metallogenic in the middle Longshou Mountains of Gansu Province[J]. Geology and Exploration, 2015,51(6):1069-1078.
[19] 杜乐天 . 花岗岩型铀矿文集[M]. 北京: 原子能出版社, 1982.
[19] Du L T . Collected Works of granite — type uranium deposits[M]. Beijing: Atomic Energy Press, 1982.
[20] 杜乐天 . 碱交代成矿作用的地球化学共性和归类[J]. 矿床地质, 1983,2:33-41.
[20] Du L T . Geochemistry commonness and classification of alkali metasomatic mineralization[J]. Mineral Deposits, 1983,2:33-41.
[21] 杜乐天 . 碱交代岩研究的重大成因意义[J]. 矿床地质, 2002,21:953-958.
[21] Du L T . The important significance of Alkali-metasomatic rock studies[J]. Mineral Deposits, 2002,21:953-958.
[22] 朱意萍, 姚仲友, 赵宇浩 , 等. 南美地区铀矿床类型、成矿区带及找矿前景[J]. 地质通报, 2017,36(12):2185-2196.
[22] Zhu Y P, Yao Z Y, Zhao Y H, , et al. Deposit types, metallogenic belts and prospecting potential for uranium deposits in South America[J]. Geological Bulletin of China, 2017,36(12):2185-2196.
[23] 孟凡兴, 贺海扬, 梁永顺 , 等. 综合物探方法在五里营地区火山岩型铀矿勘查中的应用[J]. 物探与化探, 2017,41(5):826-834.
[23] Meng F X, He H Y, Liang Y S , et al. The application of comprehensive geophysical prospecting method to the exploration of the volcanic rock type uranium deposits in Wuliying area[J]. Geophysical and Geochemical Exploration, 2017,41(5):826-834.
[24] 张恩, 段明, 卢辉雄 , 等. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019,43(5):948-957.
[24] Zhang E, Duan M, Lu H X , et al. An analysis of multivariate uranium metallogenic information and metallogenic prognosis in Linxi-Ulanhot area[J]. Geophysical and Geochemical Exploration, 2019,43(5):948-957.
[1] 王云云, 兰学毅, 郭冬, 张莎莎, 丁文祥, 陶龙, 张慧杰, 张媛媛, 叶林, 尤淼. 安徽铜陵—繁昌地区深部成岩成矿作用探讨——来自综合地球物理探测的制约[J]. 物探与化探, 2021, 45(3): 590-600.
[2] 刘波, 宋振涛, 李霄, 李茂. 芨岭岩体北部地区革命沟断裂地电结构特征[J]. 物探与化探, 2016, 40(5): 876-879.
[3] 李星, 王峰, 罗大锋, 解康, 牛杰, 高明山, 杨锁. 综合物探方法在云南江城隐伏铅锌矿勘查中的应用[J]. 物探与化探, 2015, 39(6): 1119-1123.
[4] 钱建平, 何胜飞, 王富民, 程金华. 安徽省廖家地区地质地球化学特征和构造地球化学找矿[J]. 物探与化探, 2008, 32(5): 519-524,528.
[5] 徐明才, 高景华, 柴铭涛, 王广科. 寻找隐伏金属矿的地震方法技术研究[J]. 物探与化探, 1997, 21(6): 468-474.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com