Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 441-448    DOI: 10.11720/wtyht.2020.1259
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测
高阳1, 彭明涛1, 杨培胜2, 王恒1, 王平1, 李海1
1. 重庆地勘局208水文地质工程地质队,重庆 400700
2. 劳雷地球物理公司 成都中心,四川 成都 610037
Geological radar detection for the fractures of dangerous rock body in the high-steep gorge area of Wuxia section in the Three Gorges reservoir area
Yang GAO1, Ming-Tao PENG1, Pei-Sheng YANG2, Heng WANG1, Ping WANG1, Hai LI1
1. No. 208 Hydrogeological and Engineering Party,Bureau of Geological Exploration of Chongqing,Chongqing 400700,China
2. Laurel Geophysics Company Chengdu Center,Chengdu 610037,China
全文: PDF(8138 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三峡库岸岩石受构造、风化及消落带水位影响裂隙发育,本文利用有限差分正演算法程序模拟计算危岩裂隙的探地雷达响应特征,结果表明:不同形态下的裂缝有不同的探地雷达响应特征,通过模型与模拟计算结果建立的对应关系可从野外实测数据中识别岩体裂缝。以重庆巫峡板壁岩危岩带探地雷达探测为例,对探地雷达野外实测数据进行推断解释危岩裂隙带,并以钻孔高清摄像及波速测试验证推断解释的准确性,为防治、监测方案的制定提供科学依据。该案例可为其他库岸高陡峡谷区危岩裂隙带探测提供借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高阳
彭明涛
杨培胜
王恒
王平
李海
关键词 三峡库区高陡峡谷区消落带裂隙探测探地雷达    
Abstract

Rocks along the Three Gorges reservoir area are cracked due to the influence of structure,weathering and water-level-fluctuation area.In this paper,the finite difference forward algorithm program was used to simulate and calculate the radar response characteristics of the fractures of dangerous rock body.The results show that different inclined fractures have different GPR response characteristics.According to the corresponding relationship between model and simulation results,fractures can be identified from field measured data.Taking the geological radar detection of Banbiyan dangerous rock zone in Chongqing as a study case,the authors successfully identified the fractures of dangerous rock bodies by inferring and interpreting the field measured data of ground penetrating radar.The case study itself can be used as a reference for the detection of the fractures of the dangerous rock body in other water-level-fluctuation areas.

Key wordsThree Gorges reservoir bank    high-steep gorge area    water-level-fluctuation area    fractures of dangerous rock body    geological radar detection
收稿日期: 2019-05-10      出版日期: 2020-04-22
:  P631.4  
基金资助:重庆市国土资源和房屋管理局项目(渝国土房管(2017)522号文批准)
作者简介: 高阳(1987-),男,物探工程师,硕士研究生,从事工程、水文、地灾地球物理勘探及工程检测工作。Email: gaoyang2580@126.com
引用本文:   
高阳, 彭明涛, 杨培胜, 王恒, 王平, 李海. 三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测[J]. 物探与化探, 2020, 44(2): 441-448.
Yang GAO, Ming-Tao PENG, Pei-Sheng YANG, Heng WANG, Ping WANG, Hai LI. Geological radar detection for the fractures of dangerous rock body in the high-steep gorge area of Wuxia section in the Three Gorges reservoir area. Geophysical and Geochemical Exploration, 2020, 44(2): 441-448.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1259      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I2/441
Fig.1  裂缝模型探地雷达正演模拟效果
a—垂直裂缝模型及模拟结果;b—倾斜裂缝模型及模拟结果;c—垂直倾斜组合裂缝模型及模拟结果;d—组合裂缝模型及模拟结果;e—分离的空洞模型及模拟结果;f—合并的空洞模型及模拟结果
Fig.2  板壁岩危岩带危岩分布立面图
Fig.3  探地雷达测线平面示意
Fig.4  146 m高程线探地雷达图像
Fig.5  156 m高程线探地雷达图像
Fig.6  176 m高程线探地雷达图像
Fig.7  XK1钻孔孔内高清摄像图像
Fig.8  XK4钻孔孔内高清摄像图像
Fig.9  XK2钻孔波速测试成果
[1] 梁鑫, 殷坤龙, 陈丽霞 , 等. 库水位波动及降雨作用下巫峡干井子滑坡流-固耦合特征及稳定性分析[J]. 中国地质灾害与防治学报, 2019,30(1):30-40.
[1] Liang X, Yin K L, Chen L X , et al. Flow-solid coupling characteristics and stability analysis of Ganjingzi Landslide in the Wu Gorge under reservoir water level fluctuation and rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2019,30(1):30-40.
[2] 陈洪凯, 唐红梅 . 长江三峡水库区危岩分类及宏观判据研究[J]. 中国地质灾害与防治报, 2005,16(4):53-57,78.
[2] Chen H K, Tang H M . Classification and identify of perilous rock in the area of the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2005,16(4):53-57,78.
[3] 何潇, 陈洪凯, 赵鹏 , 等. 长江巫峡岸坡座滑式危岩稳定性研究——以望霞座滑式危岩为例[J]. 中国岩溶, 2013,32(4):411-418.
[3] He X, Chen H K, Zhao P , et al. On the stability of slide type crag in Wu gorge bank slope,Yangtze River:A case study in Wangxia[J]. Carsologica Sinica, 2013,32(4):411-418.
[4] 殷坤龙, 周春梅, 柴波 . 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报, 2014,33(8):1635-1643.
[4] Yin K L, Zhou C M, Chai B . Failure mechanism and criterion of counter-tilt rock slopes at wuxia gorge section in three gorges reservoir area[J]. Chinese Journal of Rock Mechanics & Engineering, 2014,33(8):1635-1643.
[5] 李洋, 王金平, 魏启明 . 瞬变电磁法在井下工作面顶板导水裂缝探测中的应用[J]. 煤田地质与勘探, 2018,46(s1):66-71.
[5] Li Y, Wang J P, Wei Q M . Application of transient electromagnetic method for detecting water-conducting crack in the roof of underground working face[J]. Coal Geology & Exploration, 2018,46(s1):66-71.
[6] 郭建强, 彭成, 孙党生 . 链子崖危岩体勘查中物探技术的应用[J].水文地质工程地质, 2003(3):54-57.
[6] Guo J Q, Peng C, Sun D S . Application of geophysical prospecting technique to survey the dangerous rockmass in Lianzi Cliff[J].Hydrogeology & Engineering, 2003(3):54-57.
[7] 刘惠生, 唐大荣, 吴庆曾 , 等. 非常规综合物探技术在长江三峡链子崖危岩体勘查中的应用效果[J].中国地质灾害与防治学报, 1991(3):77-86.
[7] Liu H S, Tang D R, Wu Q Z , et al. The application effects of non-conventional comprehensive geophysical technology in the exploration of Lianzi cliff dangerous rock body in the Sanxia gorges on Changjiang river[J].The Chinese Journal of Geological Hazard and Control, 1991(3):77-86.
[8] 李维树, 童克强, 董忠华 . 高边坡岩体卸荷带检测方法及卸荷特征研究[J].岩石力学与工程学报, 2001(s1):1669-1673.
[8] Li W S, Tong K Q, Dong Z H . Examining method of unload zone and study of unload behaviour for high slope[J].Chinese Journal of Rock Mechanics and Engineering, 2001(s1):1669-1673.
[9] 卢贤锥 . 探地雷达在铁路隧道检测中的应用[J]. 物探与化探, 2017,41(4):775-778.
[9] Lu X Z . Application of ground penetrating radar in railway tunnel inspection[J]. Geophysical and Geochemical Exploration, 2017,41(4):775-778.
[10] 杨天春, 吕绍林, 王齐仁 . 探地雷达检测道路厚度结构的应用现状及进展[J]. 物探与化探, 2003,27(1):79-82.
[10] Yang T C, Lyu S L, Wang Q R . The application and development of GPR in detection of pavement thickness and highway structures[J]. Geophysical and Geochemical Exploration, 2003,27(1):79-82.
[11] 覃谭, 赵永辉, 林国聪 , 等. 探地雷达在上林湖越窑遗址水下考古中的应用[J]. 物探与化探, 2018,42(3):624-630.
[11] Tan Q, Zhao Y H, Lin G C , et al. The application of GPR to underwater archaeological investigation of Shanglinhu Yue kiln relics[J]. Geophysical and Geochemical Exploration, 2018,42(3):624-630.
[12] 朱楠男, 李家存, 叶培盛 . 探地雷达在古墓遗址探测中的应用——以北京市通州区古墓群探测为例[J]. 物探与化探, 2017,41(3):577-582.
[12] Zhu N N, Li J C, Ye P S . The application of the ground penetrating radar (GPR) to the detection f ruins of ancient tombs[J]. Geophysical and Geochemical Exploration, 2017,41(3):577-582.
[13] 刘生荣, 张瑾爱, 唐小平 . 探地雷达在探测基岩顶深度中的应用[J]. 物探与化探, 2018,42(2):325-330.
[13] Liu S R, Zhang J A, Tang X P . The application of GPR in detecting the depth of bedrock[J]. Geophysical and Geochemical Exploration, 2018,42(2):325-330.
[14] 薛建, 梁文婧, 刘立家 , 等. 探地雷达低频天线在工程勘探中的应用[J]. 物探与化探, 2015,39(6):1251-1256.
[14] Xue J, Liang W J, Liu L J , et al. Application of ground penetrating radar with low frequency antennas in engineering prospecting[J]. Geophysical and Geochemical Exploration, 2015,39(6):1251-1256.
[15] 熊俊楠, 孙铭, 彭超 , 等. 基于探地雷达的城镇燃气PE管道探测方法[J]. 物探与化探, 2015,39(5):1079-1084.
[15] Xiong J N, Sun M, Peng C , et al. The method for detection of town gas PE pipeline based on ground penetrating radar (GPR)[J]. Geophysical and Geochemical Exploration, 2015,39(5):1079-1084.
[16] 杨天春, 冯建新, 王战军 . 探地雷达在桥塔塔基岩溶勘查中的应用及信号分析[J]. 物探与化探, 2011,35(2):280-284.
[16] Yang T C, Feng J X, Wang Z J . The application of GPR to the exploration of Karst caves in the foundation of bridge tower and its signal analysis[J]. Geophysical and Geochemical Exploration, 2011,35(2):280-284.
[17] 薄会申 . 铁路隧道衬砌质量检测与评价探地雷达技术实用手册[M]. 北京: 地质出版社, 2006.
[17] Bo H S. Practical manual of geological radar technology for quality inspection and evaluation of railway tunnel lining[M]. Beijing: Geological Publishing House, 2006.
[18] 袁明德 . 浅析探地雷达的分辨率[J]. 物探与化探, 2002,26(1):28-32.
[18] Yuan M D . A tentative discussion on the resolution of the ground-penetrating radar[J]. Geophysical and Geochemical Exploration, 2002,26(1):28-32.
[19] 李大心 . 探地雷达方法与应用[M]. 北京: 地质出版社, 1994.
[19] Li D X. Method and application of ground penetrating radar[M]. Beijing: Geological Publishing House, 1994.
[20] 雷林源 . 探地雷达应用中的几个基本问题[J]. 物探与化探, 1998,22(6):408-414.
[20] Lei L Y . Some basic problems in the application of ground-penetration radar[J]. Geophysical and Geochemical Exploration, 1998,22(6):408-414.
[21] 郝建新, 魏玉峰, 林雄斌 . 地质雷达探测干扰因素及图像识别研究[J].工程勘察, 2008(11):73-75.
[21] Hao J X, Wei Y F, Lin X B . Research on interference factors and image identification in the detection with GPR[J].Journal of Geotechnical Investigation and Surveying, 2008(11):73-75.
[22] 王超, 沈斐敏 . 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015,39(2):421-424.
[22] Wang C, Shen F M . Study of wavelet transform in ground penetration radar weak signal denoising[J]. Geophysical and Geochemical Exploration, 2015,39(2):421-424.
[1] 杨丹, 李伟, 魏永梁, 宋斌. 双树复小波变换在川藏铁路拉林段某隧道超前地质预报中的应用[J]. 物探与化探, 2021, 45(6): 1504-1511.
[2] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[3] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[4] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[5] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[6] 王飞详, 梁风, 左双英. 基于探地雷达岩体浅部节理面识别的模型实验[J]. 物探与化探, 2020, 44(1): 185-190.
[7] 许泽善, 周江涛, 刘四新, 曾贤德. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5): 1145-1150.
[8] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[9] 王成浩, 程丹丹. 基于马氏距离模板特征的地雷目标识别研究[J]. 物探与化探, 2019, 43(4): 899-903.
[10] 李俊杰, 徐庆强, 李剑强, 何建设, 郭佳豪. 千岛湖配水工程隧洞超前预报中的综合物探技术[J]. 物探与化探, 2019, 43(2): 428-434.
[11] 张军伟, 刘秉峰, 李雪, 祝全兵, 任跃勤. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019, 43(2): 435-440.
[12] 戴前伟, 陈威, 张彬. 改进型粒子群算法及其在GPR全波形反演中的应用[J]. 物探与化探, 2019, 43(1): 90-99.
[13] 石春娟. 重庆大足千手观音造像的电磁勘探和水文地质勘探[J]. 物探与化探, 2018, 42(6): 1306-1310.
[14] 宋二乔, 刘四新, 何荣钦, 蔡佳琪, 罗坤. 探地雷达探测季节性冻土的正演模拟[J]. 物探与化探, 2018, 42(5): 962-969.
[15] 覃谭, 赵永辉, 林国聪, 胡书凡, 安聪, 耿德祥, 饶椿锋. 探地雷达在上林湖越窑遗址水下考古中的应用[J]. 物探与化探, 2018, 42(3): 624-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com