Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1387-1398    DOI: 10.11720/wtyht.2020.0343
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于矢量有限元的大地电磁快速三维正演研究
顾观文1,2(), 武晔1,2, 石砚斌1,2
1.防灾科技学院 地球科学学院,河北 廊坊 065201
2.河北省地震动力学重点实验室,河北 廊坊 065201
Research on fast three-dimensional forward algorithm of magnetotelluric sounding based on vector finite element
GU Guan-Wen1,2(), WU Ye1,2, SHI Yan-Bin1,2
1. School of Earth Sciences, Institute of Disaster Prevention, Langfang 065201, China
2. Hebei Key Laboratory of Earthquake Dynamics, Langfang 065201, China
全文: PDF(1541 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文采用直接求解器PARDISO且无需散度校正的正演方案,求解矢量有限元法对应的大型线性方程组,获得不同地形(水平和起伏)条件下地电模型的大地电磁响应,提高了大地电磁三维正演计算的速度。在中等规模计算条件下,通过本文的计算方法与带散度校正的迭代求解法对比,计算速度可提高十倍以上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾观文
武晔
石砚斌
关键词 大地电磁矢量有限元法三维正演PARDISO    
Abstract

The finite element method has the characteristics of strong adaptability in simulating the electromagnetic response of rugged topography and complex geological bodies. In recent years, it has been widely used in the three-dimensional (3D) forward modeling of magnetotelluric (MT) sounding. However, the finite element method also has some shortcomings in terms of computational efficiency. The large amount of calculation and long running time of the method are the main factors that lead to the lag of the practical process of the 3D MT inversion technology based on the finite element method compared with the 3D MT inversion technology based on the finite difference method. In order to improve the 3D forward speed of MT, the authors adopt the forward modeling scheme which uses the direct solver PARDISO and does not need divergence correction to solve the large-scale linear equations corresponding to the vector finite element method, and obtain the MT response of the geoelectric model under such different terrain conditions as flat and rugged topography. Under the conditions of medium-scale calculation, through the comparison between the direct solution method without divergence correction and the iterative solution method with divergence correction, the authors have detected that the direct solution method without divergence correction has advantages in calculation accuracy and calculation time, especially in the calculation. In terms of time, the ratio of the calculation speed of the direct solution and the iterative solution is raised by more than ten times.

Key wordsmagnetotelluric    vector finite element method    3D forward    PARDISO
收稿日期: 2020-07-02      出版日期: 2020-12-29
ZTFLH:  P631  
基金资助:中央高校创新团队项目(ZY20180102);自然资源部“十五”重点科技项目(20010211)
作者简介: 顾观文(1975-),男,教授级高级工程师,从事电磁法正反演研究及其软件研制工作。 Email:sun_ggw@163.com
引用本文:   
顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
GU Guan-Wen, WU Ye, SHI Yan-Bin. Research on fast three-dimensional forward algorithm of magnetotelluric sounding based on vector finite element. Geophysical and Geochemical Exploration, 2020, 44(6): 1387-1398.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0343      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1387
Fig.1  带地形三维MT数值模拟区域剖面示意[11]
Fig.2  矢量有限元法的区域剖分示意
a—区域剖分示意; b—电场分量位置示意
频点
/Hz
视电阻率(ρxy,ρyx)/(Ω·m) 相位φ/(°)
矢量有限元解 解析解 误差/% 矢量有限元解 解析解 误差/%
10000 99.4934 100 0.5066 44.9824 45 0.039111
8000 99.5168 100 0.4832 44.9800 45 0.044444
5000 99.5580 100 0.442 44.9782 45 0.048444
2000 99.6149 100 0.3851 44.9802 45 0.044
1000 99.6266 100 0.3734 44.9895 45 0.023333
500 99.7002 100 0.2998 44.9601 45 0.088667
200 99.8467 100 0.1533 45.0661 45 0.14689
100 99.4868 100 0.5132 45.1051 45 0.23356
50 99.2563 100 0.7437 45.0452 45 0.10044
10 99.4329 100 0.5671 44.9565 45 0.096667
5 99.5295 100 0.4705 44.9596 45 0.089778
2 99.6083 100 0.3917 44.9717 45 0.062889
1 99.6484 100 0.3516 44.9776 45 0.049778
0.5 99.6599 100 0.3401 44.9970 45 0.006667
0.1 99.7267 100 0.2733 44.9301 45 0.155333
0.05 99.9013 100 0.0987 44.9393 45 0.134889
0.01 100.0090 100 0.009 44.9873 45 0.028222
0.005 100.0070 100 0.007 44.9949 45 0.011333
0.001 100.0010 100 0.001 44.9995 45 0.001111
0.0005 100.0000 100 0 44.9998 45 0.000444
0.0001 100.0000 100 0 45.0000 45 0
Table 1  均匀半空间模型矢量有限元解与解析解对比
Fig.3  均匀半空间模型三维正演视电阻率(a)和相位(b)与解析解对比
层参数 第一层 第二层 第三层
电阻率/(Ω·m) 100 10 1000
层厚/m 370 268
Table 2  H型层状模型参数
频点
/Hz
视电阻率(ρxy,ρyx)/(Ω·m) 相位φ/(°)
矢量有限元解 解析解 误差/% 矢量有限元解 解析解 误差/%
10000 99.4944 100 0.505638 44.9825 45.00002 0.03894
8000 99.5156 99.99967 0.484074 44.9807 45.00007 0.00043
5000 99.564 100.0036 0.439562 44.9729 44.9985 0.000569
2000 99.1812 99.72298 0.543282 45.0089 45.02392 0.000334
1000 100.138 100.1248 0.01314 44.3103 44.43167 0.002732
500 108.223 107.9785 0.22646 44.9127 44.67756 0.00526
200 112.433 113.6883 1.104134 51.6513 51.46143 0.00369
100 94.4807 95.60484 1.175822 59.265 59.07526 0.00321
50 63.587 64.76429 1.817807 63.9834 63.85949 0.00194
10 28.0673 28.37355 1.079333 45.849 46.13936 0.006293
5 32.2082 32.33247 0.384363 32.3095 32.54673 0.007289
2 55.1794 55.21716 0.06839 21.4561 21.55953 0.004797
1 89.6415 89.67347 0.035652 18.7262 18.78408 0.003081
0.5 143.375 143.3732 0.00122 19.0537 19.09105 0.001956
0.1 348.002 347.851 0.04341 25.4995 25.50588 0.00025
0.05 457.716 457.5438 0.03763 29.036 29.03635 1.19E-05
0.01 692.088 691.9579 0.0188 36.1384 36.13554 7.9E-05
0.005 769.11 769.008 0.01327 38.3803 38.37769 6.8E-05
0.001 888.395 888.3428 0.00588 41.8079 41.80643 3.5E-05
0.0005 919.642 919.6043 0.0041 42.7015 42.70037 2.7E-05
0.0001 963.197 963.179 0.00187 43.9466 43.94614 1.1E-05
Table 3  H型层状模型矢量有限元解与解析解对比
Fig.4  H型层状模型三维正演视电阻率(a)和相位(b)数值解与解析解对比
层参数 第一层 第二层 第三层
电阻率/(Ω·m) 100 1000 10
层厚/m 370 268
Table 4  K型层状模型参数
频点
/Hz
视电阻率(ρxy,ρyx)/(Ω·m) 相位φ/(°)
矢量有限元解 解析解 误差/% 矢量有限元解 解析解 误差/%
10000 99.4928 99.99995 0.507154 44.9823 44.99998 0.039291
8000 99.5179 100.0004 0.482464 44.9795 44.99994 0.04542
5000 99.5522 99.9958 0.443615 44.9822 45.00155 0.042987
2000 99.9938 100.3013 0.306591 44.9731 44.9962 0.05134
1000 98.5514 99.11594 0.569571 45.4799 45.46765 0.02695
500 94.8705 94.84442 0.0275 43.8641 44.11071 0.55908
200 111.446 109.5436 1.73666 42.1518 41.35312 1.93136
100 124.19 128.152 3.091671 47.226 45.89309 2.90438
50 115.34 122.0064 5.46397 54.8037 54.506 0.54618
10 55.4147 56.83843 2.504864 64.9559 65.42769 0.721085
5 38.6174 39.2693 1.660063 64.5842 64.96375 0.584241
2 25.6211 25.88921 1.03559 61.7858 62.03061 0.394665
1 20.052 20.20837 0.773778 58.9626 59.13016 0.28337
0.5 16.5801 16.68206 0.611172 56.1309 56.24364 0.200444
0.1 12.6035 12.65607 0.415342 50.8822 50.92886 0.091626
0.05 11.7748 11.82107 0.391403 49.346 49.36433 0.037132
0.01 10.7493 10.77999 0.284731 46.9822 47.06061 0.166611
0.005 10.5349 10.54576 0.102932 46.4109 46.47605 0.140175
0.001 10.2412 10.24057 0.00616 45.6579 45.67163 0.030065
0.0005 10.17 10.16953 0.00462 45.4711 45.47688 0.012716
0.0001 10.0755 10.07547 0.00035 45.2136 45.21445 0.001873
Table 5  K型层状模型矢量有限元解与解析解对比
Fig.5  K型层状模型三维正演视电阻率(a)和相位(b)数值解与解析解对比
Fig.6  COMMEMI3D-2 模型示意
Fig.7  本文矢量有限元正演算法的计算结果与IE方法的计算结果对比
a—Zxy模式正演视电阻率;b—Zyx模式正演视电阻率;c—Zxy模式正演阻抗相位; d—Zyx模式正演阻抗相位
Fig.8  三维地形及其网格剖分示意
a—三维地形示意; b—地形网格剖分和MT测点分布示意
Fig.9  二维山峰地形示意
Fig.10  三维矢量有限元算法(PARDISO)计算的二维地形影响与二维有限元结果对比
a—正演视电阻率; b—正演阻抗相位
Fig.11  无需散度校正的直接解法与带散度校正的迭代解法计算结果对比曲线
a—正演视电阻率; b—正演阻抗相位
[1] Wannmaker P E. Advances in three-dimensional magnetotelluric modeling using integral equations[J]. Geophysics, 1991,56:1716-1728.
[2] 徐凯军, 李桐林, 张辉, 等. 利用积分方程法的大地电磁三维正演[J]. 西北地震学报, 2006(2):104-107.
[2] Xu K J, Li T L, Zhang H, et al. Three-dimensional magnetotelluric forward modeling using integral equation[J]. Northwestern Seismological Journal, 2006(2):104-107.
[3] 任政勇, 陈超健, 汤井田, 等. 一种新的三维大地电磁积分方程正演方法[J]. 地球物理学报, 2017,60(11):4506-4515.
[3] Ren Z Y, Chen C J, Tang J T, et al. A new integral equation approach for 3D magnetotelluric modeling[J]. Chinese Journal of Geophysics, 2017,60(11):4506-4515.
[4] Mackie R L, Madden T R, Wannamaker P. 3-D magnetotelluric modeling using difference equations-theory and comparisons to integral equation solutions[J]. Geophysics, 1993,58:215-226.
[5] Mackie R L, Smith T J, Madden T R. 3-D electromagnetic modeling using difference equations:The Magnetotelluric Example[J]. Radio Sci., 1994,29:923-935.
[6] Newman G A, Alumbaugh D L. Three-dimensional induction logging problems.Part I. An integral equation solution and model comparisons[J]. Geophysics, 2002,67:484-491.
[7] 谭捍东, 余钦范, John Booker, 等. 大地电磁三维交错网格有限差分正演[J]. 地球物理学报, 2003,46(5):705-711.
[7] Tan H D, Yu Q F, Booker J, et al. Magnetotelluric three-dimension modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics, 2003,46(5):705-711.
[8] 董浩, 魏文博, 叶高峰, 等. 基于有限差分正演的带地形三维大地电磁反演方法[J]. 地球物理学报, 2014,57(3):939-952.
[8] Dong H, Wei W B, Ye G F, et al. Study of three-dimensional magnetotelluric inversion including surface topography based on Finite-difference method[J]. Chinese Journal of Geophysics, 2014,57(3):939-952.
[9] Mitsuhata Y, Uchida T. 3D magnetotelluric modeling using the T-Ω finite-element method[J]. Geophysics, 2004,69(1):108-119.
[10] 汤井田, 张林成, 公劲喆, 等. 三维频率域可控源电磁法有限元—无限元结合数值模拟[J]. 中南大学学报:自然科学版, 2014,45(4):1251-1260.
[10] Tang J T, Zhang L C, Gong J Z, et al. 3D frequency domain controlled source electromagnetic numericalmodeling with coupled finite-infinite element method[J]. Journal of Central South University:Science and Technology, 2014,45(4):1251-1260.
[11] Shi X, Utada H, Wang J, et al. Three-dimensional magnetotelluric forward modelling using vector finite element method combined with divergence corrections(VFE++)[R]// 2004,17th IAGA WG1.2 Workshop on electromagnetic Induction in the Earth.Hyderabad.
[12] Nam N J, Kim H J, Song Y, et al. 3D magnetotelluric modelling inluding surface topography[J]. Geophysical Prospecting, 2007,55(2):277-287.
[13] Ren Z Y, Kaischeuer T, Greenhalgh S, et al. A goal-oriented adaptive finite-element approach for plane wave 3D electromagnetic modeling[J]. Geophys. J. Int., 2013,194:700-718.
[14] 顾观文, 吴文鹂, 李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报:地球科学版, 2014,44(5):1678-1686.
[14] Gu G W, Wu W L, Li T L. Modeling for the effect of magnetotelluric 3D topography based on the vector finite-element method[J]. Journal of Jilin University:Earth Science Edition, 2014,44(5):1678-1686.
[15] 殷长春, 张博, 刘云鹤, 等. 面向目标自适应三维大地电磁正演模拟[J]. 地球物理学报, 2017,60(1):327-336.
[15] Yin C C, Zhang B, Liu Y H, et al. A goal-oriented adaptive algorithm for 3D magnetotelluric forward modeling[J]. Chinese Journal of Geophysics, 2017,60(1):327-336.
[16] 王刚, 魏文博, 金胜, 等. 冈底斯成矿带东段的电性结构特征研究[J]. 地球物理学报, 2017,60(8):2993-3003.
[16] Wang G, Wei W B, Jin S, et al. A study on the electrical structure of eastern Gangdese metallogenic belt[J]. Chinese Journal of Geophysics, 2017,60(8):2993-3003.
[17] 余辉, 邓居智, 陈辉, 等. 起伏地形下大地电磁L-BFGS三维反演方法[J]. 地球物理学报, 2019,62(8):3175-3188.
[17] Yu H, Deng J Z, Chen H, et al. Three-dimensional magnetotelluric inversion under topographic relief based on the limited-memory quasi-Newton algorithm(L-BFGS)[J]. Chinese Journal of Geophysics, 2019,62(8):3175-3188.
[18] 崔腾发, 陈小斌, 詹艳, 等. 安徽霍山地震区深部电性结构和发震构造特征[J]. 地球物理学报, 2020,63(1):256-269.
[18] Cui T F, Chen X B, Zhan Y, et al. Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area[J]. Chinese Journal of Geophysics, 2020,63(1):256-269.
[19] 杨文采, 金胜, 张罗磊, 等. 青藏高原岩石圈三维电性结构[J]. 地球物理学报, 2020,63(3):817-827.
[19] Yang W C, Jin S, Zhang L L, et al. The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2020,63(3):817-827.
[20] 汤井田, 任政勇, 化希瑞. 地球物理学中的电磁场正演与反演[J]. 地球物理学进展, 2007,22(4):1181-1194.
[20] Tang J T, Ren Z Y, Hua X R. The forward modeling and inversion ingeophysical electromagnetic field[J]. Progress in Geophysics, 2007,22(4):1181-1194.
[21] Smith J T. Conservative modeling of 3D electromagnetic fields, Part I, Properties and error analysis[J]. Geophysics, 1996,61:1308-1318.
doi: 10.1190/1.1444054
[22] Farquharson C G, Miensopust M P. Three-dimensional finite-element modeling of magnetotelluric data with a divergence correction[J]. Journal of Applied Geophysics, 2011,75(4):699-710.
doi: 10.1016/j.jappgeo.2011.09.025
[23] Schenk O, Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO[J]. Future Generation Computer Systems, 2004,20:475-487.
doi: 10.1016/j.future.2003.07.011
[24] AmestoyP R, Duff I S, L’Excellent J Y, et al. A fully asynchronous multifrontal solver using distributed dynamic scheduling[J]. SIAM J. Matrix Anal. Appl., 2002,23(1):15-41.
doi: 10.1137/S0895479899358194
[25] Amestoy P R, Guermouche A, L’Excellent J Y, et al. Hybrid schedulingfor the parallel solution of linear systems[J]. Parallel Computing, 2006,32(2):136-156.
doi: 10.1016/j.parco.2005.07.004
[26] Streich R. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy[J]. Geophysics, 2009,74(5):F95-F105.
doi: 10.1190/1.3196241
[27] Puzyrev V, Koldan J, De La Puente J, et al. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modeling[J]. Geophysical Journal International, 2013,193(2):678-693.
doi: 10.1093/gji/ggt027
[28] Kordy M, Wannamaker K, Maris V, et al. 3D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers—Part I: forward problem and parameter Jacobians[J]. Geophys. J. Int., 2016,204:74-93.
doi: 10.1093/gji/ggv410
[29] 汤井田, 任政勇, 周聪. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015,58(8):2681-2705.
[29] Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review[J]. Chinese Journal of Geophysics, 2015,58(8):2681-2705.
[30] Siripunvaraporn W, Egbert G, Lenbury Y. Numerical accuracy of magnetotelluric modeling: A comparison of finite difference approximations[J]. Earth Planets Space, 2002,54:721-725.
doi: 10.1186/BF03351724
[31] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[31] Xu S Z. Finite element method in Geophysics[M]. Beijing: Science Press, 1994.
[32] 金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学出版社, 1998: 176-189.
[32] Jin J M. The Finite element method in electromagnecic fields [M]. Xi’an: Xidian University Press, 1998: 176-189.
[33] Gould N I M, Scott J A, H Y F. A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations[J]. ACM Transactions on Mathematical Software, 2007,33(2):300-325.
[34] Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophys. J. Int., 2000,140:410-424.
doi: 10.1046/j.1365-246x.2000.00007.x
[35] 谭捍东, 魏文博, 邓明, 等. 大地电磁法张量阻抗通用计算公式[J]. 石油地球物理勘探, 2004,39(1):113-116.
[35] Tan H D, Wei W B, Deng M, et al. General use formula in MT tensor impedance[J]. Oil Geophysical Prospecting, 2004,39(1):113-116.
[36] Zhdanov M S, Varentov I M, Weaver J T, et al. Methods for modeling electromagnetic fields: Results from COMMEMI——The international project on the comparison of modeling methods for electromagnetic induction[J]. Journal of Applied Geophysics, 1997,37:133-271.
doi: 10.1016/S0926-9851(97)00013-X
[37] Wannamaker P E, Stodt J A, Rijo L. Two-dimensional topographic responses in magnetotelluric model using finite elements[J]. Geophysics, 1986,51(11):2121-2144.
[38] 秦策, 王绪本, 赵宁. 基于二次场方法的并行三维大地电磁正反演研究[J]. 地球物理学报, 2017,60(6):2456-2468.
[38] Qin C, Wang X B, Zhao N. Parallel three-dimensional forward modeling and inversion of magnetotelluric based on a secondary field approach[J]. Chinese Journal of Geophysics, 2017,60(6):2456-2468.
[39] Chen P F, Hou Z H, Fan G H. Three-dimension topographic responses in MT using finite difference method[J]. Acta Seismologica Sinica, 1998,11(5):631-635.
doi: 10.1007/s11589-998-0079-6
[1] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[2] 章惠, 隋少强, 钱烙然, 汪新伟. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4): 727-733.
[3] 王志宏, 江民忠, 彭莉红, 程莎莎. 航空大地电磁法在辽宁省丹东地区的应用[J]. 物探与化探, 2020, 44(4): 734-741.
[4] 冯斌, 梁萌, 吴文鹂, 张学利, 杜炳锐, 马娜. 地质云”模式下大地电磁数据共享研究[J]. 物探与化探, 2020, 44(4): 796-802.
[5] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[6] 彭炎, 张小博, 张健, 张鹏辉, 袁永真, 姜春香. 大地电磁测深法在滨北西部斜坡带油气地质调查评价中的应用[J]. 物探与化探, 2020, 44(3): 656-664.
[7] 吕琴音, 张小博, 仇根根, 王刚. 大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究[J]. 物探与化探, 2020, 44(3): 677-684.
[8] 区小毅, 黎海龙, 杨富强, 莫亚军, 陆怀成. 音频大地电磁法在广西北海市海水入侵调查中的应用[J]. 物探与化探, 2020, 44(1): 66-73.
[9] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[10] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[11] 张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
[12] 王长城. 大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验[J]. 物探与化探, 2019, 43(5): 997-1002.
[13] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[14] 杨淼鑫, 谭捍东, 梁盛军, 王鑫. 对称非各向同性体大地电磁法二维异常特征[J]. 物探与化探, 2019, 43(4): 794-803.
[15] 何祎, 雷晓东, 关伟, 李晨, 李巧灵. 北京副中心地区燕郊断裂空间展布特征[J]. 物探与化探, 2019, 43(3): 461-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com