Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1085-1092    DOI: 10.11720/wtyht.2020.0227
  广域电磁勘探技术应用专栏 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法在上宫金矿集区的应用研究
刘耀文1,2(), 蒋永芳3, 冯绍平1,2(), 游文兵3, 张苏坤1,2, 常嘉毅1,2, 李利1,2, 张怡静1,2
1.河南省地质矿产勘查开发局 第一地质矿产调查院,河南 洛阳 471023
2.河南省金银多金属成矿系列与深部预测重点实验室,河南 洛阳 471023
3.湖南继善高科技有限公司,湖南 长沙 410208
The application of the wide field electromagnetic method to the Shanggong gold ore concentration area
LIU Yao-Wen1,2(), JIANG Yong-Fang3, FENG Shao-Ping1,2(), YOU Wen-Bin3, ZHANG Su-Kun1,2, CHANG Jia-Yi1,2, LI Li1,2, ZHANG Yi-Jing1,2
1.First Survey Institute of Geology and Mineral Resources, Henan Bureau of Geo-exploration and Mineral Development,Luoyang 471023,China
2.Gold and Silver Polymetallic Metallogenic Series and Deep Prediction Key Laboratory in Henan Province,Luoyang 471023,China
3.Hunan Geosun High Tech Co.,Ltd,Changsha 410208,China
全文: PDF(3412 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

上宫金矿集区位于豫西熊耳山地区,地处华北陆块南缘,区内发育多处构造蚀变型金矿床。结合区域地质、物探等资料,对上宫金矿集区采用了广域电磁法测量,对广域电磁数据进行了系统的数据处理与定量反演计算,并进行了综合地质解释,综合分析了广域电磁法对探测金矿的效果。根据反演剖面,推断区内存在中低视电阻率电性特征为新太古界太华群石板沟岩组片麻岩类,高视电阻率电性特征为中元古界熊耳群许山组安山岩类,中高视电阻率电性特征为元古宙闪长岩侵入岩体。依据视电阻率拟面图、反演剖面成果图及相关地质资料,推断划分了8条断裂构造带,2条构造蚀变带,其中F1、F5两条构造破碎带,延伸长度大,具有较好的深部找矿空间和潜力,在其深部圈定了2处成矿有利区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘耀文
蒋永芳
冯绍平
游文兵
张苏坤
常嘉毅
李利
张怡静
关键词 广域电磁法上宫金矿广域视电阻率    
Abstract

The Shanggong gold ore concentration area is located in Xiong'ershan area of western Henan Province, and lies on the south margin of North China block. Combined with regional geological and geophysical data, the authors used the wide-field electromagnetic method to measure the Shanggong ore concentration area, and systematically processed and quantitatively retrieved the wide-field electromagnetic data. According to the inversion profile, the electrical characteristics of middle and low apparent resistivity in this area were inferred to be gneisses of Shibangou Formation of Neo-Archean Taihua Group, the high apparent resistivity shows andesites of Xushan Formation of middle Proterozoic Xiong’er Group, and middle and high apparent resistivity shows intrusions of Proterozoic diorite. According to the apparent resistivity pseudoplane map, resultant inversion profile and related geological data, eight fault tectonic belts and two tectonic alteration belts were delineated, among which F1 and F5 tectonic fracture belts, with large extension length, had good deep ore-prospecting space and potential, and two favorable ore-forming areas were delineated in the depth.

Key wordswide-field electromagnetic method    Shanggong gold ore concentration area    wide-field apparent resistivity
收稿日期: 2020-04-30      出版日期: 2020-10-26
:  P618.51  
基金资助:河南省自然资源科研项目(2019-373-2)
通讯作者: 冯绍平
作者简介: 刘耀文(1968-),男,教授级高工,主要从事矿产勘查、地质科研、矿山开发工作。Email: 1261254490@qq.com
引用本文:   
刘耀文, 蒋永芳, 冯绍平, 游文兵, 张苏坤, 常嘉毅, 李利, 张怡静. 广域电磁法在上宫金矿集区的应用研究[J]. 物探与化探, 2020, 44(5): 1085-1092.
LIU Yao-Wen, JIANG Yong-Fang, FENG Shao-Ping, YOU Wen-Bin, ZHANG Su-Kun, CHANG Jia-Yi, LI Li, ZHANG Yi-Jing. The application of the wide field electromagnetic method to the Shanggong gold ore concentration area. Geophysical and Geochemical Exploration, 2020, 44(5): 1085-1092.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0227      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1085
Fig.1  熊耳山地区区域地质图(据文献[11]略修改)
SBF—三宝断裂; MF—马超营断裂; LF—栾川断裂; SDF—商丹断裂; 1—古近系-第四系;2—栾川群;3—官道口群;4—熊耳群;5—太华群;6—正长岩;7—混合花岗岩;8—闪长岩;9—燕山期花岗岩;10—地层界线;11—不整合面;12—断层;13—背斜;14—倒转背斜;15—金矿;16—银矿;17—钼矿;18—研究区范围
岩矿石名称 件数/块 视电阻率/(Ω·m)
范围 平均值
安山岩 42 1580.7~12213 5214.5
花岗斑岩 41 563.6~54139.5 5297.7
闪长岩 16 1137.4~8786.9 3942.5
片麻岩 39 250.8~10872.3 2847.8
矿化岩石 31 256.9~5559 1865.6
Table 1  岩(矿)石电性参数统计
Fig.2  GY33线频率—视电阻率拟断面
Fig.3  GY33线二维连续介质反演电阻率断面
Fig.4  河南省熊耳山上宫金矿集区广域电磁法测线部署
Fig.5  熊耳山上宫金矿集区广域电磁法测量GY33线反演解译综合剖面
[1] 汪江河, 孙卫志, 刘耀文, 等. 金矿体趋势预测方法及其在河南上宫金成矿带的应用效果[J]. 矿产勘查, 2015,6(6):752-757.
[1] Wang J H, Sun W Z, Liu Y W, et al. Forcasting method for gold orebody trending and its application on prospecting in Shanggong gold metallogenic belt, Henan[J]. Mineral Exploration, 2015,6(6):752-757.
[2] 范宏瑞, 谢奕汉, 王英兰. 豫西上宫构造蚀变岩型金矿成矿过程中的流体—岩石反应[J]. 岩石学报, 1998,14(4):529-541.
[2] Fan H R, Xie Y H, Wang Y L. Fluid-rock interaction during mineralization of the shanggong structure-controlled alteration-type gold deposit in western Henan Province, Central China[J]. Acta Petrologica Sinica, 1998,14(4):529-541.
[3] 付法凯, 汪江河, 赵春和. 河南省洛宁上宫金矿资源潜力浅议[J]. 西部探矿工程, 2007(5):89-92.
[3] Fu F K, Wang J H, Zhao C H. Discussion on the potential resource of Shanggong gold mine in Luoning, Henan Province[J]. West-China Exploration Engineering, 2007(5):89-92.
[4] 付思峰. 上宫构造蚀变岩型金矿床地质特征及化探找金经验[J]. 物探与化探, 2008,32(3):267-269.
[4] Fu S F. Geological characteristics and geochemical gold prospecting achievements in the Shanggong tectonic altered rock type gold deposit[J]. Geophysical and Geochemical Exploration, 2008,32(3):267-269.
[5] 胡新露, 何谋春, 姚书振. 东秦岭上宫金矿成矿流体与成矿物质来源新认识[J]. 地质学报, 2013,87(1):91-100.
[5] Hu X L, He M C, Yao S Z. New understanding of the source of ore-forming material and fluid in the Shanggong gold depodit,east Qinling[J]. Acte geologica sinica, 2013,87(1):91-100.
[6] 胡新露, 姚书振, 何谋春, 等. 河南省上宫金矿成矿热力学条件及成矿机制[J]. 中南大学学报:自然科学版, 2013,44(12):4962-4971.
[6] Hu X L, Yao S Z, He M C, et al. Metallogenic thermodynamic conditions and ore-forming mechanism of Shanggong Gold Deposit, Henan Province[J]. Journal of Central South University:Science and Technology, 2013,44(12):4962-4971.
[7] 何继善. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社, 1990.
[7] He J S. Control source audio magnetotellurics[M]. Changsha: Central South University Press, 1990.
[8] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[8] Tang J T, He J S. The apply of control source audio magnetotellurics[M]. Changsha: Central South University Press, 2005.
[9] 黎世美, 瞿伦全, 李先民, 等. 熊耳山地区蚀变构造岩型金矿成矿地质条件及富集规律研究报告[R]. 洛阳:河南省地矿厅第一地质调查队, 1989.
[9] Li S M, Qu L Q, Li X M, et al. Researches on metallogenic geology and mineralization of the Xiong'er shan Structure-Controlled Alteration-Type Gold Deposit [R]. Luoyang:The First Geological Survey Team of the Department of Geology and Mineral Resources of Henan Province, 1989.
[10] 姚军明, 赵太平, 李晶, 等. 河南祁雨沟金成矿系统辉钼矿Re-Os年龄和锆石U-Pb年龄及Hf同位素地球化学[J]. 岩石学报, 2009,25(2):374-384.
[10] Yao J M, Zhao T P, Li J, et al. Molybdenite Re-Os age and zircon U-Pb age and Hf isotope geochemistry of the Qiyugou gold system, Henan Province[J]. Acta Petrologica Sinica, 2009,25(2):374-384.
[11] 冯绍平, 汪江河, 刘耀文, 等. 熊耳山上宫金矿床围岩蚀变特征及找矿意义[J]. 矿产勘查, 2017,8(3):382-392.
[11] Feng S P, Wang J H, Liu Y W, et al. Characteristics of wallrock alteration and its prospecting significance of Shanggong gold deposit in Xiongershan area[J]. Mine Ralexploration, 2017,8(3):382-392.
[12] 李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D]. 北京:中国地质大学(北京), 2005: 1-125.
[12] Li Y F. The temporal and spatial relationships of Mesozoic era granitoids and molybdenum (gold) deposit mineralization in the Xiong’ershan area[D]. Beijing:China University of Geosciences (Beijing), 2005: 1-125.
[13] 李永峰. 小秦岭—熊耳山地区金矿大规模成矿作用研究[R]. 973项目研究报告, 2004: 1-57.
[13] Li Y F. Large scale mineralization of gold deposits in Xiaoqinling-Xiong’ershan area [R]. 973 Project Research Report, 2004: 1-57.
[14] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,41(3):1065-1072.
[14] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010,41(3):1065-1072.
[15] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010: 1-7.
[15] He J S. Wide field electromagnetic sounding methods and pseudo-random signal coding electrical method[M]. Beijing: Higher Education Press, 2010: 1-7.
[16] 李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J] 中国有色金属学报, 2013,23(9):2459-2470.
[16] Li D Q, Xie W, Chen D X. Three-dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals, 2013,23(9):2459-2470.
[1] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[2] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[3] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[4] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[5] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[6] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[7] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[8] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[9] 王洪军, 田红军, 贺春艳, 刘光迪. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058.
[10] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[11] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[12] 蒋永芳, 李芳书, 曹渊, 夏灵云, 张婷. 广域电磁法在金属矿勘探中的应用研究和探讨[J]. 物探与化探, 2020, 44(5): 1073-1077.
[13] 梁维天, 李勇, 王东波, 李浩, 袁圣, 冯家新, 孙文. 辽东南金属矿勘查中广域电磁法应用效果[J]. 物探与化探, 2020, 44(5): 1078-1084.
[14] 田红军, 张光大, 刘光迪, 游文兵, 张应文. 黔北台隆区地热勘探中广域电磁法的应用效果[J]. 物探与化探, 2020, 44(5): 1093-1097.
[15] 张光大, 古志文, 邹忠平. 基于广域电磁法的准南山前带砾石层勘探攻关试验[J]. 物探与化探, 2020, 44(5): 1098-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com