Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 870-877    DOI: 10.11720/wtyht.2020.0077
  2020年重磁方法理论及应用研究专题研讨会专栏 本期目录 | 过刊浏览 | 高级检索 |
SAG-2M型与KSS31M型海洋重力仪比测结果分析
张菲菲1,2,3,4,5(), 孙建伟1,2, 韩波1,2, 杜润林1,2, 王万银3,4,5()
1.自然资源部天然气水合物重点实验室 青岛海洋地质研究所,山东 青岛 266071
2.海洋国家实验室 海洋矿产资源评价与探测技术功能实验室,山东 青岛 266071
3.长安大学 重磁方法技术研究所,陕西 西安 710054
4.长安大学 地质工程与测绘学院,陕西 西安 710054
5.长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054
The result analysis of the comparison between SAG-2M and KSS31M marine gravimeters
Fei-Fei ZHANG1,2,3,4,5(), Jian-Wei SUN1,2, Bo HAN1,2, Run-Lin DU1,2, Wan-Yin WANG3,4,5()
1. The Key Laboratory of Gas Hydrate,Ministry of Natural Resources,Qingdao Institute of Marine Geology,Qingdao 266071,China
2. Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266071,China
3. Insititute of Gravity and Magnetic Technology,Chang’an University,Xi’an 710054,China
4. College of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China
5. Key Laboratory of Western China’s Mineral Resources and Geological Engineering,Ministry of Education,Chang’an University,Xi’an 710054,China
全文: PDF(1743 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为检验我国自主研发的SAG-2M型海洋重力仪的技术性能,验证其获取重力数据的可靠性,选用德国KSS31M型海洋重力仪开展同船比测工作。按照海洋地质调查规范分别处理了2台重力仪的原始重力数据,对2台重力仪得到的自由空间重力异常数据的交点差、测线及网格数据进行了对比分析及相关性分析。数据对比分析结果表明,两种型号重力仪测量精度相当,数据异常形态及变化趋势一致,幅值基本吻合,两者数据高度线性相关。通过此次同船比测工作,认为我国自主研发的SAG-2M型海洋重力仪平台稳定,测量精度与德国KSS31M型海洋重力仪相当,该比测结果对今后SAG-2M型海洋重力仪的研发及测量工作具有重要参考价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张菲菲
孙建伟
韩波
杜润林
王万银
关键词 SAG-2M型海洋重力仪KSS31M型海洋重力仪同船比测技术性能测量精度    
Abstract

A comparison for the marine gravimeters on the same vessel was carried out between SAG-2M marine gravimeter developed by China and KSS31M marine gravimeter designed by Germany in order to test the technical performance and data reliability of SAG-2M marine gravimeter. The raw gravity data acquired from these two marine gravimeters were preprocessed according to the standards of marine geologic survey to obtain the free air gravity anomalies, and the comparison and relativity for those two types of gravity data were studied by analyzing the cross-point differences, survey lines and grid data. The result shows that the SAG-2M marine gravimeters have the same level of measurement accuracy with the KSS31M marine gravimeter because there is a highly linear relationship between the data from two marine gravimeters with an approximately similar variation trend. Based on the results of comparison, it is concluded that the self-developed SAG-2M marine gravimeter shares the similar standard of measurement accuracy with the KSS31M marine gravimeter with a stabilized technical performance, which provides an important reference for the future application of SAG-2M marine gravimeter.

Key wordsSAG-2M marine gravimeter    KSS31M marine gravimeter    comparison on the same vessel    technical performance    measurement accuracy
收稿日期: 2020-02-18      出版日期: 2020-08-28
:  P631  
基金资助:中国地质调查局项目(DD20191003);国家自然基金重点支持项目“琉球海沟俯冲带岩石圈结构与流体循环——海洋大地电磁与地震数据约束”(91958210)
通讯作者: 王万银
作者简介: 张菲菲(1983-),女,助理研究员,在读博士研究生,主要从事海域重、磁数据处理及解释应用研究工作。Email:ffeizhang@126.com
引用本文:   
张菲菲, 孙建伟, 韩波, 杜润林, 王万银. SAG-2M型与KSS31M型海洋重力仪比测结果分析[J]. 物探与化探, 2020, 44(4): 870-877.
Fei-Fei ZHANG, Jian-Wei SUN, Bo HAN, Run-Lin DU, Wan-Yin WANG. The result analysis of the comparison between SAG-2M and KSS31M marine gravimeters. Geophysical and Geochemical Exploration, 2020, 44(4): 870-877.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0077      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/870
Fig.1  SAG-2M型海洋重力仪主机
技术参数 SAG-2M KSS31M
测量范围/(10-5 m·s-2) ±20000 ±10000
横摇 全姿态 ±40°
纵摇 全姿态 ±40°
静态精度/(10-5 m·s-2) 0.02 0.02
动态精度/(10-5 m·s-2) 1 0.5~2
主机尺寸、重量 29 cm×26 cm×28 cm、18 kg 68 cm×53 cm×53 cm、72 kg
Table 1  SAG-2M与KSS31M海洋重力仪技术参数对比
Fig.2  KSS31M型海洋重力仪
Fig.3  测线布设(底图为测区地形)
仪器名称 KSS31M(联络线) SAG-2M(联络线)
mad rms std mad rms std
KSS31M(主测线) 0.6033 0.8163 0.8172 0.5038 0.6576 0.6582
SAG-2M(主测线) 0.5094 0.6760 0.6767 0.4905 0.6506 0.6513
Table 2  仪器交点差统计10-5 m/s2
Fig.4  部分测线自由空间重力异常平面剖面示意
Fig.5  网格数据偏差分布
测线名 rab mad/(10-5 m·s-2) rms/(10-5 m·s-2) std/(10-5 m·s-2)
Z01 0.9969465 1.028 1.28 0.76
Z07 0.9980488 0.49 0.84 0.68
Z13 0.9966732 0.76 0.98 0.62
Z19 0.9960449 0.59 0.78 0.51
Z28 0.9938768 0.81 1.10 0.74
Z37 0.9972808 0.65 0.82 0.49
Z46 0.9957206 0.63 0.81 0.52
Z55 0.9949318 0.73 1.01 0.70
平均值 0.711 0.9525 0.6275
Table 3  同测线2台重力仪测量偏差统计
rab mad/(10-5 m·s-2) rms/(10-5 m·s-2) std/(10-5 m·s-2)
0.9945 0.59 0.83 0.58
Table 4  网格数据偏差统计
Fig.6  偏差较大测线自由空间重力异常曲线对比示意
[1] 黄谟涛, 翟国君, 管铮, 等. 海洋重力场测定及其应用[M]. 北京: 测绘出版社, 2005.
[1] Huang M T, Zhai G J, Guan Z, et al. Determination and application of marine gravity field[M]. Beijing: Surveying and Mapping Press, 2005.
[2] 张训华, 赵铁虎, 等. 海洋地质调查技术[M]. 北京: 海洋出版社, 2017.
[2] Zhang X H, Zhao T H, et al. Survey technologies of marine geology[M]. Beijing: Ocean Press, 2017.
[3] 李建成, 陈俊勇, 宁津生, 等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉: 武汉大学出版社, 2003.
[3] Li J C, Chen J Y, Ning J S, et al. Theory of the Earth’s gravity field approximation and determination of China Quasi-geoid 2000[M]. Wuhan: Wuhan University Press, 2003.
[4] 黄谟涛, 翟国君, 欧阳永忠, 等. 海洋磁场重力场信息军事应用研究现状与展望[J]. 海洋测绘, 2011,31(1):71-76.
[4] Huang M T, Zhai G J, Ouyang Y Z, et al. Prospects and development in the military applications of marine gravity and magnetic information[J]. Hydrographic Surveying and Charting, 2011,31(1):71-76.
[5] 刘敏, 黄谟涛, 欧阳永忠, 等. 海空重力测量及应用技术研究进展与展望(一):目的意义与技术体系[J]. 海洋测绘, 2017,37(2):1-5.
[5] Liu M, Huang M T, Ouyang Y Z, et al. Development and prospect of air-sea gravity survey and its applications, part Ⅰ: Objective, significance and technical system[J]. Hydrographic Surveying and Charting, 2017,37(2):1-5.
[6] 耿启立. 重力仪国外代表产品及国内研发最新进展[J]. 地质装备, 2016,17(1):27-30.
[6] Geng Q L. Representative products of gravity instruments abroad and the latest development of domestic R&D[J]. Geological Equipment, 2016,17(1):27-30.
[7] 修睿, 郭刚, 薛正兵, 等. 海空重力仪的技术现状及新应用[J]. 导航与控制, 2019,18(1):35-43.
[7] Xiu R, Guo G, Xue Z B, et al. Technical current situation and new application of marine/aviation gravimeter[J]. Navigation and Control, 2019,18(1):35-43.
[8] 中华人民共和国国家质量监督检疫总局. GB/T 12763.8—2007海洋调查规范第8部分:海洋地质地球物理调查.[S]. 北京: 中国标准出版社, 2007.
[8] General Administration of Quality Supervision and Quarantine of the People’s Republic of China. GB/T 12763.8—2007 Specifications for oceanographic survry-part 8:Marine geolopy and geophysics survey.[S]. Beijing: China Standards Press, 2007.
[9] 国家海洋局908专项办公室. 地球物理调查技术规程[S]. 北京: 海洋出版社, 2005.
[9] Special Project Office of National Bureau of Oceanography. Specifications for geophysics survey[S]. Beijing: Oceanographic Press, 2005.
[10] 刘敏, 黄谟涛, 欧阳永忠, 等. 海空重力测量及应用技术研究进展与展望(三):数据处理与精度评估技术[J]. 海洋测绘, 2017,37(4):1-10.
[10] Liu M, Huang M T, Ouyang Y Z, et al. Development and prospect of air-sea gravity survey and its applications, part Ⅲ: Data processing and precision evaluation[J]. Hydrographic Surveying and Charting, 2017,37(4):1-10.
[11] 黄谟涛, 刘敏, 吴太旗, 等. 海空重力测量关键技术指标体系论证与评估[J]. 测绘学报, 2018,47(11):1537-1548.
[11] Huang M T, Liu M, Wu T Q, et al. Research and evaluation on key technological target system for marine and airborne gravity surveys[J]. Acta Geodaetica et Gartographica Sinica, 2018,47(11):1537-1548.
[12] 欧阳永忠, 邓凯亮, 陆秀平, 等. 多型航空重力仪同机测试及其数据分析[J]. 海洋测绘, 2013,33(4):6-11.
[12] Ouyang Y Z, Deng K L, Lu X P, et al. Tests of Multi-type airborne gravimeters and data analysis[J]. Hydrographic Surveying and Charting, 2013,33(4):6-11.
[13] 张向宇, 徐行, 廖开训, 等. 多型号海洋重力仪的海上比测结果分析[J]. 海洋测绘, 2015,35(5):71-74,78.
[13] Zhang X Y, Xu X, Liao K X, et al. Result analysis for different types of gravimeters in sea trials[J]. Hydrographic Surveying and Charting, 2015,35(5):71-74,78.
[14] 张振波, 赵俊峰, 付永涛, 等. GT-1M海洋重力仪与KSS31M海洋重力仪的对比[J]. 海洋科学, 2015,39(5):85-91.
[14] Zhang Z B, Zhao J F, Fu Y T, et al. The Comparison between GT-2M and KSS31M marine gravitymeters[J]. Marine Sciences, 2015,39(5):85-91.
[15] Kovrizhnykh P, Shagirov B, Geoken , et al. Marine gravity survey at the Caspian with GT-2M, Chekan AM and L&R gravimeters: comparison of accuracy[R]. Russia: Moscow State University, 2011.
[16] Bodensee Gravitymeter Geosystem GMBH. 《Instruction manual for marine gravity meter system KSS 31M》[M], 2004.
[17] 顾兆峰, 张志珣, 杨慧良, 等. KSS31M海洋重力仪静态观测结果及分析[J]. 海洋测绘, 2005,25(2):66-68.
[17] Gu Z F, Zhang Z X, Yang H L, et al. The static measurement result of KSS31M marine gravimeter and its analysis[J]. Hydrographic Surveying and Charting, 2005,25(2):66-68.
[18] 付永涛, 王先超, 谢天峰. KSS31M型海洋重力仪动态性能的分析[J]. 海洋科学, 2007,31(6):29-33.
[18] Fu Y T, Wang X C, Xie T F. Verifying the dynamic properties of KSS31M marine gravity-meter by the observed gravity reading and GPS data[J]. Marine Sciences, 2007,31(6):29-33.
[19] 付永涛, 王先超, 谢天峰. KSS31M型海洋重力仪在海边静态观测的结果[J]. 地球物理学进展, 2007,22(1):308-311.
[19] Fu Y T, Wang X C, Xie T F. The static measurement of KSS31M marine gravity-meter at coast[J]. Progress in Geophysics, 2007,22(1):308-311.
[20] 欧阳永忠. 海空重力测量数据处理关键技术研究[D]. 武汉:武汉大学, 2013.
[20] Ouyang Y Z. On key technologies of data processing for air-sea gravity surveys[D]. Wuhan: Wuhan University, 2013.
[21] 魏子卿. 2000中国大地坐标系[J]. 大地测量与地球动力学, 2008,28(6):1-5.
[21] Wei Z Q. China geodetic coordinate system 2000[J]. Journal of Geodesy and Geodynamics, 2008,28(6):1-5.
[22] 《数学手册》编写组. 数学手册[M]. 北京: 高等教育出版社, 1979.
[22] Writing Group of 《Mathematical Directory》. Mathematical directory[M]. Beijing: Higher Education Press, 1979.
[23] 於宗俦, 鲁林成. 测量平差基础[M]. 北京: 测绘出版社, 1983.
[23] Yu Z C, Lu L C. Foundation of measurement adjustment[M]. Beijing: Surveying and Mapping Press, 1983.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com