Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 698-703    DOI: 10.11720/wtyht.2020.0054
     中国地质学会勘探地球物理专委会2019年会优秀论文 本期目录 | 过刊浏览 | 高级检索 |
低序级断层结构导向坎尼属性边缘检测识别方法
马玉歌1, 苏朝光1, 张健1, 刘军胜2
1. 中国石化胜利油田分公司物探研究院,山东 东营 257022
2. 中国石化地球物理公司国际业务中心,北京 100020
Low-order fault structure-oriented Canny property edge detection and recognition method
Yu-Ge MA1, Chao-Guang SU1, Jian ZHANG1, Jun-Sheng LIU2
1. Geophysical Research Institute of SINOPEC Shengli Oilfield Company,Dongying 257022,China
2. International Department of Sinopec Geophysical Corporation,Beijing 100020,China
全文: PDF(4330 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

常规的断层检测属性对地层产状相对较平、地震反射特征明显的低序断层有识别效果,在地层倾斜或者地层倾角变换剧烈的地方对低序级断层的识别效果很差。针对以上难点,在深入分析低序级断层地质特点和地震响应特征的基础上,对基于三维多级盲源分离与保构造滤波组合去噪的结构导向坎尼属性边缘检测低序级断层识别方法开展了研究,形成了一种有效的低序级断层识别方法,提高了低序级断层的识别能力。和相干属性对比来看,结构导向坎尼属性边缘检测结果噪声干扰更小,特别是在地层较陡或者地层产状波动较大(即地层倾角变化大)的地方,结构导向坎尼属性边缘检测结果更佳。所得结果与实钻井吻合效果好,解决了研究区的油水关系,多发现了5条低序级断层,新钻探井获得高产油流。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马玉歌
苏朝光
张健
刘军胜
关键词 多级盲源分离保构造滤波结构导向梯度属性低序级断层    
Abstract

Conventional fault detection attributes can identify low-sequence faults with relatively flat stratigraphic attitudes and obvious seismic reflection characteristics.Low-order faults are poorly identified in places where strata are inclined or the dip angle of strata changes drastically.In view of the above difficulties,on the basis of an in-depth analysis of the geological characteristics and seismic response characteristics of low-order faults,the authors carried out the research based on a method for identifying low-order faults based on the structure-oriented Canny attribute edge detection according to the combination of 3D multi-level blind source separation and structural preservation filtering denoising,and formed an effective low-order fault identification method,which improved the capability of low-order fault identification.Compared with coherent attributes,the noise detection results of the structure-oriented Canny attribute edge detection are smaller,especially in places where the stratum is steep or the attitude of the formation fluctuates greatly (that is,the formation dip angle changes greatly).The results are better.The obtained results are in good agreement with real drilling results,and the oil-water relationship in the study area is solved.Five more low-order faults were discovered,and new drilling wells have achieved high oil production flow.

Key wordsmulti-level blind source separation    structural preservation filtering    structure-oriented gradient properties    low-order fault
收稿日期: 2020-01-19      出版日期: 2020-06-24
:  P631.4  
基金资助:国家科技重大专项“大型油气田及煤层气开发”(2016ZX05011-02);胜利油田分公司课题“低序级断层识别描述技术深化研究”(YKY1801)
作者简介: 马玉歌(1975-),女,1997年毕业于中国地质大学石油地质专业,高级工程师,2011年获中国石油大学(北京)石油地质硕士学位,主要从事物探综合研究工作。Email: mayuge.slyt@sinopec.com
引用本文:   
马玉歌, 苏朝光, 张健, 刘军胜. 低序级断层结构导向坎尼属性边缘检测识别方法[J]. 物探与化探, 2020, 44(3): 698-703.
Yu-Ge MA, Chao-Guang SU, Jian ZHANG, Jun-Sheng LIU. Low-order fault structure-oriented Canny property edge detection and recognition method. Geophysical and Geochemical Exploration, 2020, 44(3): 698-703.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0054      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/698
Fig.1  技术流程
Fig.2  组合滤波前后的地震剖面对比
a—原始资料;b—组合滤波后地震剖面
Fig.3  P58-102井区新技术应用前后新老构造对比
a—P58-102井区沙三下相干属性;b—P58-102井区沙三下新方法属性;c—P58-102井区沙三下顶面构造图(老);d—P58-102井区沙三下顶面构造图(新);e—近东西向原始地震剖面
[1] 马玉歌. 盘河地区低序级断层地震识别和应用效果[J]. 科技导报, 2011,19(5):31-33.
[1] Ma Y G. Applications of seismic identification technique to low-level faults in Panhe area[J]. Science and Technology Guide, 2011,19(5):31-33.
[2] 王彦君, 雍学善, 刘应如, 等. 小断层识别技术研究及应用[J]. 勘探地球物理进展, 2007,30(2):135-139.
[2] Wang Y J, Yong X S, Liu Y R, et al. Research and application of small fault recognition technology[J]. Progress in Exploration Geophysics, 2007,30(2):135-139.
[3] 刘彦, 孟小红, 胡金民, 等. 断层识别技术及其在MB油气田的应用[J]. 地球物理学进展, 2008,23(2):515-521.
[3] Liu Y, Meng X H, Hu J M, et al. Faults identifying technique and it's application in MB oil-gas field[J]. Progress in Exploration Geophysics, 2008,23(2):515-521.
[4] 张欣. 蚂蚁追踪在断层自动解释中的应用——以平湖油田放鹤亭构造为例[J]. 石油地球物理勘探, 2010,45(2):278-281.
[4] Zhang X. Application of ant tracing algorithm in fault automatic interpretation:A case study on Fangheting structure in Pinghu Oilfield[J]. Oil Geophysical Prospecting, 2010,45(2):278-281.
[5] 张延庆, 魏小东, 王亚楠, 等. 谱分解技术在QL油田小断层识别与解释中的应用[J]. 石油地球物理勘探, 2006,41(5):584-586.
[5] Zhang Y Q, Wei X D, Wang Y N, et al. Application of spectral factorization in recognition and interpretation of minor faults in QL oilfield[J]. Oil Geophysical Prospecting, 2006,41(5):584-586.
[6] 杨瑞召, 李洋, 庞海玲, 等. 产状控制蚂蚁体预测微裂缝技术及其应用[J]. 煤田地质与勘探, 2013,41(2):72-75.
[6] Yang R Z, Li Y, Pang H L, et al. Prediction technology of micro fractures by occurrence-controlled ant body and its application[J]. Coal Geology & Exploration, 2013,41(2):72-75.
[7] 白青林, 杨少春, 路智勇, 等. 复杂断块区低序级断层的井-震联合识别[J]. 石油地球物理勘探, 2019,54(5):1131-1139.
[7] Bai Q L, Yang S C, Lu Z Y, et al. Low-grade fault identification in complex fault-block zones based on well and seismic data[J]. Oil Geophysical Prospecting, 2019,54(5):1131-1140.
[8] 张昕, 甘利灯, 刘文岭, 等. 密井网条件下井震联合低级序断层识别方法[J]. 石油地球物理勘探, 2012,47(3):462-468.
[8] Zhang X, Gan L D, Liu W L, et al. Joint well-seismic interpretation of low-grade faults in dense well pattern block[J]. Oil Geophysical Prospecting, 2012,47(3):462-468.
[9] 冉怀江, 梁兴, 陈方鸿, 等. 复杂小断层精细解释方法在洋心次凹的应用[J]. 石油地球物理勘探, 2011,46(2):299-303.
[9] Ran H J, Liang X, Chen F H, et al. Seismic subtle interpretation of complex minor fault in Yangxin Sub-sag[J]. Oil Geophysical Prospecting, 2011,46(2):299-303.
[10] 陈波, 魏小东, 任敦占, 等. 基于谱分解技术的小断层识别[J]. 石油地球物理勘探, 2010,45(6):890-894.
[10] Chen B, Wei X D, Ren D Z, et al. Small fault identification based on spectrum decom-position technique[J]. Oil Geophysical Prospecting, 2010,45(6):890-894.
[11] 吕双兵. 井震联合断层识别技术及其应用——以杏北油田为例[J]. 地球物理学进展, 2015,30(5):2200-2205.
[11] Lyu S B. Identification of fault by integration of well and seismic data and its applications—taking Xingbei oilfield as the example[J]. Progress in Geophysics, 2015,30(5):2200-2205.
[12] 尹川, 杜向东, 赵汝敏, 等. 小波分频倾角相干在复杂断裂解释中的应用[J]. 石油地球物理勘探, 2015,50(2):346-350.
[12] Yin C, Du X D, Zhao R M, et al. Dip-steering similarity based on wavelet decomposi-tion in complex fault interpretation[J]. Oil Geophysical Prospecting, 2015,50(2):346-350.
[13] 隋京坤, 郑晓东, 李艳东. 一种精确消除倾斜地层对相干值影响的方法[J]. 石油地球物理勘探, 2015,50(4):691-698.
[13] Sui J K, Zheng X D, Li Y D, et al. A precise algorithm to eliminate effects of slope on seismic coherence[J]. Oil Geophysical Prospecting, 2015,50(4):691-698.
[14] 孙永壮. 异常地质体地震边缘检测技术研究[D]. 青岛:中国石油大学(华东) 2014.
[14] Sun Y Z. The research of abnormal geological body identification based on seismic edge detection[D]. Qingdao:China University of Petroleum, 2014.
[15] 刁瑞, 吴国忱, 尚新民, 等. 地面阵列式微地震数据盲源分离去噪方法[J]. 物探与化探, 2017,41(3):521-526.
[15] Diao R, Wu G C, Shang X M, et al. The blind separation denoising method for surface array micro-seismic data[J]. Geophysical and Geochemical Exploration, 2017,41(3):521-526.
[16] 边树涛, 董艳蕾, 苏晓军, 等. 地震相干体技术识别低序级断层方法研究[J]. 世界地质, 2007,26(3):368-373.
[16] Bian S T, Dong Y L, Su X J, et al. Method study of seismic coherence cube technique to interpretation of low level faults[J]. Global Geology, 2007,26(3):368-373.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com