Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1306-1312    DOI: 10.11720/wtyht.2020.0038
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
EM聚类方法在岩性复杂区水系沉积物地球化学异常圈定中的应用
孙尧尧(), 郝立波, 赵新运, 陆继龙, 马成有, 魏俏巧()
吉林大学 地球探测科学与技术学院,吉林 长春 130026
The application of EM clustering method to the determination of stream sediment geochemical anomalies in areas with variable lithologies
SUN Yao-Yao(), HAO Li-Bo, ZHAO Xin-Yun, LU Ji-Long, MA Cheng-You, WEI Qiao-Qiao()
College of Geo-Exploration Science and Technology,Jilin University,Changchun 130026,China
全文: PDF(2244 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地球化学背景与异常的划分是化探找矿工作的关键环节,然而,岩性复杂区水系沉积物地球化学异常的圈定常受到岩性背景的影响,若不消除这个影响而直接进行异常圈定,可能会造成一些严重的错误。研究表明,岩性背景问题的本质是多重母体问题,而Expectation-Maximization(EM)聚类方法能有效地分解多重母体,可在一定程度上消除岩性背景的影响。本文以湖南省某地1∶20万水系沉积物地球化学数据为例,采用EM聚类方法进行多重母体分解,然后进行地球化学异常圈定,并讨论了多重母体分解对异常圈定的影响。结果表明,EM聚类方法的应用可使异常圈定更加合理,主要体现在虚假异常的削弱和低弱异常的强化方面。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙尧尧
郝立波
赵新运
陆继龙
马成有
魏俏巧
关键词 地球化学异常岩性背景多重母体EM算法水系沉积物    
Abstract

The separation of anomalies from backgrounds is a critical step in geochemical prospecting. However, the determination of stream sediment geochemical anomalies is always affected by lithologic backgrounds in areas with variable lithologies. If this influence is not eliminated prior to anomaly determination, some serious errors may occur. In fact, a problem of lithologic background is essentially a problem of multiple population, which can be effectively solved by the clustering method based on the Expectation-Maximization (EM) algorithm. In this study, the authors applied the EM clustering method to a geochemical data set from a 1∶200,000 scale stream sediment survey, and then discussed the influence of separating multiple populations on anomaly determination. A practical example demonstrates that geochemical anomalies of stream sediments in lithologically complex regions can be determined in a more reasonable way by using the EM clustering method. This is mainly reflected in two aspects: on the one hand, strong but false anomalies can be eliminated, and on the other hand, weak but important anomalies can be uncovered.

Key wordsgeochemical anomaly    lithology background    multiple population    EM algorithm    stream sediments
收稿日期: 2020-01-19      出版日期: 2020-12-29
ZTFLH:  P632  
基金资助:中央级公益性科研院所基本科研业务费专项(AS2016P02);国家重点研发计划项目(2016YFC0600606)
通讯作者: 魏俏巧
作者简介: 孙尧尧(1997-),女,硕士,地球探测与信息技术专业。Email:yaoyaos19@mails.jlu.edu.cn
引用本文:   
孙尧尧, 郝立波, 赵新运, 陆继龙, 马成有, 魏俏巧. EM聚类方法在岩性复杂区水系沉积物地球化学异常圈定中的应用[J]. 物探与化探, 2020, 44(6): 1306-1312.
SUN Yao-Yao, HAO Li-Bo, ZHAO Xin-Yun, LU Ji-Long, MA Cheng-You, WEI Qiao-Qiao. The application of EM clustering method to the determination of stream sediment geochemical anomalies in areas with variable lithologies. Geophysical and Geochemical Exploration, 2020, 44(6): 1306-1312.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0038      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1306
Fig.1  研究区地质简图
Fig.2  水系沉积物样品Al2O3、K2O、Ti、MgO含量概率分布型式
Fig.3  分类数与AIC值关系曲线
Fig.4  分类结果
Fig.5  分类后Al2O3、K2O、Ti、MgO含量概率分布型式
Fig.6  传统方法(左侧)与EM方法(右侧)圈定的W、Sn地球化学异常
背景值 第一类样品
(391)
第二类样品
(52)
第三类样品
(278)
第四类样品
(259)
第五类样品
(70)
w(W)/10-6 3.4 55 4.9 2.7 18
w(Sn)/10-6 5.2 31 6.2 2.7 17
Table 1  分类样品中W、Sn背景值
[1] 李宝强, 孙泽坤. 区域地球化学异常信息提取方法研讨[J]. 西北地质, 2004,37(1):102-108.
[1] Li B Q, Sun Z K. Study on the method of geochemical anomalies analysis[J]. Northwestern Geology, 2004,37(1):102-108.
[2] 程志中, 谢学锦. 岩石中元素背景值变化对地球化学成矿预测的影响[J]. 中国地质, 2006,33(2):411-417.
[2] Cheng Z Z, Xie X J. Influence of variation in element background values in rocks on metallogenic prognosis in geochemical maps[J]. Geology in China, 2006,33(2):411-417.
[3] 郝立波, 李巍, 陆继龙. 确定岩性复杂区的地球化学背景与异常的方法[J]. 地质通报, 2007,26(12):1531-1535.
[3] Hao L B, Li W, Lu J L. Method for determining the geochemical background and anomalies in areas with complex lithology[J]. Geological Bulletin of China, 2007,26(12):1531-1535.
[4] Hao L B, Zhao X Y, Zhao Y Y, et al. Determination of the geochemical background and anomalies in areas with variable lithologies[J]. Journal of Geochemical Exploration, 2014,139:177-182.
[5] Zhao X Y, Hao L B, Lu J L, et al. Origin of skewed frequency distribution of regional geochemical data from stream sediments and a data processing method[J]. Journal of Geochemical Exploration, 2018,194:1-8.
[6] 周蒂. 分区背景校正法及其对化探异常圈定的意义[J]. 物探与化探, 1986,10(4):263-273.
[6] Zhou D. Unit-wise adjustment of geochemiacl background data and its significance in geochemical anomaly delineation[J]. Geophysical and Geochemical Exploration, 1986,10(4):263-273.
[7] Vistelius A B. The skew frequency distributions and the fundamental law of the geochemical processes[J]. The Journal of Geology, 1960,68:1-22.
[8] Govett G J S, Goodfellow W D, Chapman R P, et al. Exploration geochemistry—Distribution of elements and recognition of anomalies[J]. Mathematical Geology, 1975,7:415-446.
[9] 郝立波, 马力, 赵海滨. 岩石风化成土过程中元素均一化作用及机理:以大兴安岭北部火山岩区为例[J]. 地球化学, 2004,33(2):131-138.
[9] Hao L B, Ma L, Zhao H B. Elemental homogenization during weathering and pedogenesis of volcanic rocks from North Da Hinggan Ling[J]. Geochimica, 2004,33(2):131-138.
[10] 郝立波, 陆继龙, 马力. 浅覆盖区土壤化学成分与基岩化学成分的关系及其意义——以大兴安岭北部地区为例[J]. 中国地质, 2005,32(3):477-482.
[10] Hao L B, Lu J L, Ma L. Relation between the chemical compositions of residual soils and bedrocks in shallow overburden areas and its significance:A case study of the northern Da Hinggan Mountains[J]. Geology in China, 2005,32(3):477-482.
[11] Reimann C, Filzmoser P, Garrett R. Background and threshold: critical comparison of methods of determination[J]. Science of the Total Environment, 2005,346:1-16.
[12] Ahrens L H. A fundamental law of geochemistry[J]. Nature, 1953,172:1148.
[13] Miesch A T, Chapman R P. Log transformation in geochemistry[J]. Mathematical Geology, 1977,9:191-198.
[14] Hoyle M H. Transformations: An introduction and a bibliography[J]. International Statistical Reviews, 1973,41:203-223.
[15] Box G E P, Cox D R. An analysis of transformations[J]. Journal of the Royal Statistical Society:Series B, 1964,26:211-252.
[16] Stanley C. Numerical transformation of geochemical data: 1. Maximizing geochemical contrast to facilitate information extraction and improve data presentation[J]. Geochemistry: Exploration, Environment, Analysis, 2006,6:69-78.
[17] Cheng Q M, Xu Y G, Grunsky E. Integrated spatial and spectrum method for geochemical anomaly separation[J]. Natural Resources Research, 2000,9:43-51.
[18] Cheng Q M. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns[J]. Mathematical Geology, 2004,36:345-360.
[19] 谢淑云, 鲍征宇. 地球化学场的连续多重分形模式[J]. 地球化学, 2002,31(2):191-200.
[19] Xie S Y, Bao Z Y. Continuous multifractal model of geochemical fields[J]. Geochimica, 2002,31(2):191-200.
[20] Whitehead R E S, Govett G J S. Exploration rock geochemistry—detection of trace element halos at heath steele mines (N.B., Canada) by discriminant analysis[J]. Journal of Geochemical Exploration, 1974,3:371-386.
[21] Sinclair A J. Selection of threshold values in geochemical data using probability graphs[J]. Journal of Geochemical Exploration, 1974,3:129-149.
[22] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM Algorithm[J]. Journal of the Royal Statistical Society:Series B, 1977,39:1-38.
[23] Akaike H. Statistical predictor identification[J]. Annals of the Institute of Statistical Mathematics, 1970,22:203-217.
[1] 韩登辉, 高顺宝, 郑有业, 陈鑫, 姜晓佳, 顾艳荣, 燕晨晨. 地球化学数据含量—面积多重分形方法中台阶效应的处理方法[J]. 物探与化探, 2020, 44(6): 1420-1428.
[2] 翁望飞, 王德恩, 王邦民, 丁勇, 王拥军. 安徽省祁门—黟县地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2020, 44(1): 1-12.
[3] 龚晶晶, 杨剑洲, 马生明, 苏磊. 利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常[J]. 物探与化探, 2020, 44(1): 122-131.
[4] 李凯, 廖咏, 黄凝, 陈红生, 袁晶, 刘小龙. 新疆巴里坤望洋台一带1∶5万水系沉积物测量异常特征及找矿靶区优选[J]. 物探与化探, 2019, 43(6): 1236-1245.
[5] 薛生升, 张双奎, 赵楠, 周新鹏, 靳职斌. 五台—恒山地区多金属矿远景区预测及找矿方向[J]. 物探与化探, 2019, 43(1): 46-54.
[6] 孙社良, 冯增会, 黄孝波, 曾凡淼, 张献河, 牛建忠, 朱昌杰, 陈士海. 新疆汉水泉地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2018, 42(6): 1116-1124.
[7] 吴卫国. 1:5万岩石构造地球化学测量在粤北一六矿田中的应用[J]. 物探与化探, 2018, 42(5): 866-872.
[8] 吴正昌, 王会敏, 江俊杰, 晏俊灵, 李百球. 水系沉积物地球化学普查中若干问题探讨[J]. 物探与化探, 2018, 42(5): 932-936.
[9] 李春亮, 张炜. 甘肃省祁连山西段地球化学分区及其特征[J]. 物探与化探, 2018, 42(2): 312-315.
[10] 李冲, 郝志红, 张忠进. 广东北市地区1∶5万水系沉积物测量粒级试验[J]. 物探与化探, 2018, 42(2): 303-311.
[11] 张秀芝, 王俊达, 张城钢, 谢晓阳. 上黄旗—乌龙沟断裂带走马驿—大河南区段地球化学异常解析[J]. 物探与化探, 2018, 42(1): 14-20.
[12] 师淑娟, 陈军威, 代永刚, 冯晓辉. 冀北地区铀的地球化学时空分布[J]. 物探与化探, 2017, 41(4): 627-633.
[13] 尹国良, 梁科伟, 杨福深, 温丹, 汪岩. 黑龙江省卫星—安全地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2017, 41(3): 402-409.
[14] 杨元江, 庄倩, 邓昌州, 李金明, 隋成禹, 乌日根. 黑龙江省呼中-塔河地区地球化学特征及找矿成果[J]. 物探与化探, 2017, 41(1): 86-91.
[15] 马渊博, 樊吉利, 王龙杰, 吴祖洪, 张鹏, 李楠. 1:2.5万水系沉积物加密测量法在青海黑山地区找矿中的应用[J]. 物探与化探, 2017, 41(1): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com