Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1261-1275    DOI: 10.11720/wtyht.2020.0003
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
云南个旧老厂矿田东部大比例尺构造地球化学特征及找矿预测
黄大正1(), 陈守余1,2(), 赵江南1, 吴帅吉1, 张毓策1
1.中国地质大学(武汉) 资源学院,湖北 武汉 430074
2.地质过程与矿产资源国家重点实验室,湖北 武汉 430074
Large scale tectonic geochemical characteristics and prospecting prediction in eastern Laochang orefield, Gejiu, Yunnan Province
HUANG Da-Zheng1(), CHEN Shou-Yu1,2(), ZHAO Jiang-Nan1, WU Shuai-Ji1, ZHANG Yu-Ce1
1. School of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
2. State Key Laboratory of Geological Processes and Mineral Resources, Wuhan 430074, China
全文: PDF(6083 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

老厂矿田是个旧锡铜多金属矿集区的重要组成部分,半个世纪以来,随着资源的消耗,老厂矿田已跨入资源危机行列。为缓解个旧锡矿矿产资源紧缺局面,延长矿山寿命,本文在对研究区开展1∶10 000构造地球化学测量的基础上,分析总结12种元素的地球化学特征,运用相关分析确定出元素相关关系,利用含量—面积(C-A)分形法确定异常下限,圈定异常范围,进而划分找矿远景区。结果表明:12种元素的离散、分异程度均较大,具有不同程度富集,其中Pb、Sn、Cu、Bi、As、Cd等为老厂东部主要成矿元素;Sn、Cu与Ag、Sb、Zn、Pb、As、Bi的相关性较好,与成矿关系密切;圈定的5处找矿远景区,经工程验证发现锡铜矿体,说明该地区应用构造地球化学方法可以有效地为找矿工作提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄大正
陈守余
赵江南
吴帅吉
张毓策
关键词 构造地球化学C-A分形找矿远景区危机矿山个旧锡矿    
Abstract

In the past half a century, with the consumption of resources, the Laochang orefield has entered the rank of resource crisis. In order to alleviate the shortage of mineral resources in the Gejiu tin deposit and prolong the life of the mine, the authors, on the basis of 1∶10 000 tectonic geochemical survey in the study area, analyzed and summarized the geochemical characteristics of 12 elements, used correlation analysis to determine the correlation of elements, used content-area (C-A) fractal method to determine the anomaly threshold, delineated the abnormal range, and then divided the prospecting area.The results show that the 12 elements are highly dispersed, differentiated and enriched in different degrees, among which Pb, Sn, Cu, Bi, As and Cd are the main ore-forming elements in the eastern part of Laochang, Sn and Cu elements have good correlation with Ag, Sb, Zn, Pb, As and Bi elements, and are closely related to mineralization; five prospecting area were delineated, and tin-copper orebodies were found through engineering verification,which shows that the application of tectonic geochemical method in this area can effectively provide scientific basis for the prospecting work.

Key wordstectonic geochemistry    C-A fractal    prospecting area    crisis mine    Gejiu tin mine
收稿日期: 2019-12-31      出版日期: 2020-12-29
ZTFLH:  P632  
基金资助:中国地质调查局项目“云南个旧老厂东深部资源调查”(DD2016005232)
通讯作者: 陈守余
作者简介: 黄大正(1995-),男,硕士研究生在读,矿产普查与勘探专业。Email:huangdz@cug.edu.cn
引用本文:   
黄大正, 陈守余, 赵江南, 吴帅吉, 张毓策. 云南个旧老厂矿田东部大比例尺构造地球化学特征及找矿预测[J]. 物探与化探, 2020, 44(6): 1261-1275.
HUANG Da-Zheng, CHEN Shou-Yu, ZHAO Jiang-Nan, WU Shuai-Ji, ZHANG Yu-Ce. Large scale tectonic geochemical characteristics and prospecting prediction in eastern Laochang orefield, Gejiu, Yunnan Province. Geophysical and Geochemical Exploration, 2020, 44(6): 1261-1275.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0003      或      http://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1261
Fig.1  云南个旧地区大地构造位置(a)及矿区地质简图(b)(据毛景文等[25]修改)
1—第四系;2—火把冲组板岩、砂岩、砂砾岩;3—法郎组砂岩、页岩夹凝灰岩和玄武质熔岩;4—法郎组玄武质熔岩;5—个旧组碳酸盐岩;6—下三叠统紫红色砂岩夹绿色砂岩、泥灰岩;7—哀牢山变质带;8—辉长岩;9—霞石正岩;10—碱长花岗岩;11—碱性花岗岩;12—斑状黑云母花岗岩;13—等粒黑云母花岗岩;14—断裂;15—向斜;16—背斜
Fig.2  个旧老厂矿田东部地质简图及采样位置
1—个旧组马拉格段三层,白云岩夹灰质白云岩;2—个旧组马拉格段二层,白云岩与含白云质灰岩互层;3—个旧组马拉格段一层,厚层状白云岩;4—个旧组卡房段六层,灰岩与灰质白云岩互层;5—个旧组卡房段五层,灰岩夹灰质白云岩;6—地层界线;7—断层;8—断裂破碎带;9—采样点位置
元素 分析方法 检出限/10-6 报出率/%
Ag ES 0.01 100
Sn ES 0.2 100
Sb AFS 0.05 100
As AFS 0.2 97.8
Bi ICP-MS 0.01 98.8
Cu ICP-MS 0.2 100
Zn ICP-MS 2 99.6
Mo ICP-MS 0.05 100
Cd ICP-MS 0.2 100
W ICP-MS 0.1 100
Pb ICP-MS 0.5 100
Mn ICP-MS 5 100
Table 1  构造地球化学样品分析方法及相关参数
元素 样品数 最大值 最小值 平均值 标准离差 中位数 变异系数 富集系数 全球碳酸盐岩[38]
Ag 597 44.80 0.01 0.75 2.66 0.14 3.53 >1 0.0n
Sn 597 2000.00 0.74 13.07 90.34 2.00 6.91 >1 0.n
Sb 597 370.27 0.02 8.72 27.03 2.20 3.10 43.60 0.20
Bi 597 315.37 0.02 0.74 12.91 0.07 17.48 >1
Mn 597 119900.00 0.03 1676.00 7827.60 312.60 4.67 1.52 1100.00
Cu 597 8816.00 0.50 29.37 362.80 5.60 12.34 7.34 4.00
Zn 597 23020.00 5.00 361.60 1200.62 89.70 3.32 18.08 20.00
Mo 597 200.00 0.22 2.41 12.78 0.67 5.29 6.03 0.40
Cd 597 2217.00 0.03 9.28 95.45 0.51 10.28 232 0.04
W 597 114.60 0.08 2.46 8.23 1.30 3.35 4.10 0.60
Pb 597 40506.75 3.98 467.86 2575.58 73.20 5.50 57.98 9.00
As 597 93305.00 1.00 181.07 3818.84 7.10 21.07 181.07 1.00
Table 2  老厂矿田东部构造地球化学元素含量参数统计特征
Fig.3  老厂矿田东部构造地球化学元素变异系数解释
Fig.4  老厂矿田东部构造地球化学元素对数含量分布直方图
元素 Ag Sn Sb Bi Mn Cu Zn Mo Cd W Pb As
Ag 1.00
Sn 0.61 1.00
Sb 0.64 0.61 1.00
Bi 0.35 0.49 0.40 1.00
Mn 0.76 0.57 0.66 0.26 1.00
Cu 0.53 0.64 0.57 0.60 0.44 1.00
Zn 0.71 0.61 0.74 0.27 0.75 0.54 1.00
Mo 0.44 0.53 0.41 0.48 0.30 0.56 0.31 1.00
Cd 0.64 0.48 0.54 0.34 0.63 0.50 0.70 0.30 1.00
W 0.52 0.57 0.67 0.39 0.49 0.46 0.47 0.50 0.29 1.00
Pb 0.74 0.66 0.74 0.37 0.76 0.60 0.83 0.44 0.67 0.62 1.00
As 0.64 0.69 0.75 0.63 0.57 0.70 0.68 0.53 0.58 0.57 0.70 1.00
Table 3  老厂矿田东部构造地球化学元素相关分析
元素 原始数据 剔除特高低值
样品数 峰度 偏度 样品数 峰度 偏度
Ag 597 0.76 0.83 590 0.40 0.70
As 597 6.39 1.57 578 0.11 0.53
Bi 597 10.32 2.39 556 1.19 1.23
Cu 597 5.72 1.68 560 0.12 0.67
Pb 597 1.22 0.88 584 -0.03 0.53
Sb 597 0.64 0.42 580 -0.14 0.31
Sn 597 4.00 1.89 504 0.56 1.03
Zn 597 0.55 0.71 594 0.20 0.61
Table 4  老厂矿田东部构造地球化学元素数据正态检验特征值
Fig.5  不同元素C-A双对数散点及分段拟合
元素 特征值
D1 D2 D3 D4 C1 C2 C3
Ag 0.04 0.53 1.37 0.08 0.78
As 0.04 0.65 1.18 4.07 17.38
Bi 0.05 0.95 1.54 0.07 0.23
Cu 0.03 0.84 1.60 3.80 17.78
Pb 0.02 0.56 1.06 36.31 398.11
Sb 0.02 0.15 1.27 1.55 9.55
Sn 0.03 0.51 1.05 2.33 1.38 9.12 18.62
Zn 0.01 0.53 1.35 46.77 281.84
Table 5  构造地球化学元素C-A分形统计特征
元素 Ag As Bi Cu Pb Sb Sn Zn
一级异常 0.78 17.38 0.23 17.78 398.11 9.55 9.12 281.84
二级异常 1.55 34.76 0.46 35.57 796.21 19.10 18.24 563.68
三级异常 3.10 69.51 0.92 71.13 1592.43 38.20 36.48 1127.35
Table 6  个旧老厂矿田东部元素异常下限统计
Fig.6  个旧老厂矿田东部1:10 000构造地球化学测量单元素异常
Fig.7  个旧老厂矿田东部综合异常分布及找矿远景区划分
1—Ag元素异常;2—As元素异常;3—Bi元素异常;4—Cu元素异常;5—Pb元素异常;6—Sb元素异常;7—Sn元素异常;8—Zn元素异常;9—综合异常区及编号;10—找矿远景区及编号;11—钻孔及编号;其他图例同图2
综合异
常编号
面积
/km2
元素组合 异常特征
HS-01 0.52 Sb-Bi-Pb-Cu-Zn-As-Sn-Ag 出露地层为个旧组马拉格段二层(T2g22)白云岩与含白云质灰岩互层、个旧组马拉格段一层(T2g12)厚层状白云岩,异常区内异常元素套合好,各元素三级浓度分带明显,异常区内断裂较为发育
HS-02 0.34 Sb-Cu-Sn-Pb-As-Zn-Ag 出露地层为个旧组马拉格段二层(T2g22)白云岩与含白云质灰岩互层,异常区内断裂较为发育,Sb、Cu、Sn聚于核部,Pb、Zn、Ag、As异常分布于外围,Ag、As、Pb、Sb、Zn三级浓度分带明显,但异常面积较小
HS-03 0.34 Zn-Cu-As-Sn-Sb-Ag-Pb-Bi 出露地层为个旧组马拉格段三层(T2g32)白云岩夹灰质白云岩、个旧组马拉格段二层(T2g22)白云岩与含白云质灰岩互层,异常区内断裂构造发育,Ag、Pb、Sb、Zn三级浓度分带明显
HS-04 0.34 Pb-Zn-Sb-Ag-Sn-Cu-Bi-As 出露地层为个旧组马拉格段二层(T2g22)白云岩与含白云质灰岩互层、个旧组马拉格段一层(T2g12)厚层状白云岩,异常区内断裂极为发育,元素套合较好,Sn、Cu、Sb出现三级浓度分带,但面积较小
HS-05 0.61 Zn-Sn-Ag-Bi- Sb-Cu-As-Pb 出露地层为个旧组马拉格段二层(T2g22)白云岩与含白云质灰岩互层、个旧组马拉格段一层(T2g12)厚层状白云岩,元素套合较好,具有2个浓集中心,元素三级浓度分带明显
HS-06 0.94 Zn-Ag-Sn-Sb-Pb-Cu-Bi-As 岩性较为简单,出露地层为个旧组马拉格段三层(T2g32)白云岩夹灰质白云岩,具有1个明显的浓集中心,异常套合较好,异常元素浓度高,异常面积较大,Ag、Pb、Sb、Sn三级浓度分带明显
HS-07 0.47 Sn-Ag-Sb-Zn-Pb-As-Bi-Cu 出露地层为个旧组马拉格段二层(T2g22)白云岩与含白云质灰岩互层、个旧组马拉格段一层(T2g12)厚层状白云岩、个旧组卡房段六层(T2g61)石灰岩与灰质白云岩互层,具有3个明显的浓集中心,异常套合较好,异常元素浓度较大,但异常面积较小
Table 7  综合异常特征统计
Fig.8  个旧老厂矿田东部野外及岩心照片
a—构造破碎带角砾岩;b—褐铁矿化;c—网脉状、细脉状方解石脉;d—褐铁矿化碎裂岩;e—含矿矽卡岩;f—矽卡岩硫化矿石;g—透辉石矽卡岩;h—绿泥石化大理岩
Fig.9  个旧老厂矿田东部地质—地球化学信息剖面
[1] Liao S, Chen S, Deng X, et al. Fluid inclusion characteristics and geological significance of the Xi’ao copper-tin polymetallic deposit in Gejiu, Yunnan Province[J]. Journal of Asian Earth Sciences, 2014,79(79):455-467.
[2] Cheng Y, Mao J, Chang Z, et al. The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology[J]. Ore Geology Reviews, 2013,53:50-62.
[3] Zhang J, Dai C, Huang Z, et al. Age and petrogenesis of Anisian magnesian alkali basalts and their genetic association with the Kafang stratiform Cu deposit in the Gejiu supergiant tin-polymetallic district, SW China[J]. Ore Geology Reviews, 2015,69:403-416.
[4] 曹华文, 裴秋明, 张寿庭, 等. 个旧老厂钾质煌斑岩矿物学特征及其锆石U-Pb和黑云母40Ar-39Ar年龄[J]. 地球化学, 2016,45(6):545-568.
[4] Cao H W, Pei Q M, Zhang S T, et al. Mineralogical characteristics, zircon U-Pb and biotite 40Ar-39Ar ages of potassic lamprophyres in the Gejiu tin deposit, Yunnan Province[J]. Geochimica, 2016,45(6):545-568.
[5] 陈守余, 赵鹏大, 张寿庭, 等. 个旧超大型锡铜多金属矿床成矿多样性与深部找矿[J]. 地球科学:中国地质大学学报, 2009,34(2):319-324.
[5] Chen S Y, Zhao P D, Zhang S T, et al. Mineralizing multiformity and deep prospecting of Gejiu super Sn-Cu multi-metal deposit, Yunnan, China[J]. Earth science:Journal of China University of Geosciences, 2009,34(2):319-324.
[6] 何光辉, 周涛发, 范裕, 等. 庐江沙溪斑岩型铜金矿床绿泥石的地球化学特征及找矿指示[J]. 矿床地质, 2018,37(6):1247-1259.
[6] He G H, Zhou T F, Fan Y, et al. Geochemical characteristics and exploration implications of chlorite in Shaxi porphyry copper gold deposit, Lujiang[J]. Mineral Deposits, 2018,37(6):1247-1259.
[7] 孙岩. 论构造地球化学研究[J]. 地球科学进展, 1993,8(3):1-6.
[7] Sun Y. On the study of structural geochemistry[J]. Advance in Earth Sciences, 1993,8(3):1-6.
[8] Han R S. Main study progress for ten years of Tectono-geochemistry[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2013(2):198-203.
[9] Han R S, Deyun M A, Peng W U, et al. Ore-finding method of fault tectono-geochemistry in the Tongchang Cu-Au polymetallic orefield,Shaanxi, China: I. Dynamics of tectonic ore-forming processes and prognosis of concealed ores[J]. Chinese Journal of Geochemistry, 2009,28(4):397-404.
[10] 钱建平, 黄德阳, 谢彪武, 等. 西藏谢通门县斯弄多铅锌矿区矿床地质特征和构造地球化学找矿研究[J]. 大地构造与成矿学, 2013,37(1):29-41.
[10] Qian J P, Huang D Y, Xie B W, et al. Study on geology and tectono-geochemistry of the Silongduo Lead-Zinc deposit in Xietongmen County, Tibet[J]. Geotectonica et Metallogenia, 2013,37(1):29-41.
[11] 谢彪武, 钱建平, 黄德阳, 等. 西藏阿里住浪铜银矿区构造地球化学找矿研究[J]. 地质与勘探, 2012,48(4):807-814.
[11] Xie B W, Qian J P, Huang D Y, et al. A study of structural geochemical prospecting in the alexilang copper silver ore area, Tibet[J]. Geology and Exploration, 2012,48(4):807-814.
[12] 金浚. 构造地球化学在某矿区的应用[J]. 物探与化探, 1981,5(3):174-177.
[12] Jin J. Application of structural geochemistry in a mining area[J]. Geophysical and Geochemical Exploration, 1981,5(3):174-177.
[13] 吕古贤, 孙岩, 刘德良, 等. 构造地球化学的回顾与展望[J]. 大地构造与成矿学, 2011,35(4):479-494.
[13] Lyu G X, Sun Y, Liu D L, et al. Review and prospect of tectonic geochemistry[J]. Geotectonica et Metallogenia, 2011,35(4):479-494.
[14] 齐家喆, 麦广田. 地质构造地球化学特征要素及其在区域化探解释中的应用[J]. 物探与化探, 1993,17(1):14-21.
[14] Qi J Z, Mai G T. Geochemistry characteristic elements of geological structure and their application in regional geochemical exploration interpretation[J]. Geophysical and Geochemical Exploration, 1993,17(1):14-21.
[15] 安国英. 青海省东昆仑中段地区构造地球化学特征及地质意义[J]. 物探与化探, 2015,39(1):69-75.
[15] An G Y. Tectonic geochemistry of the central segment of the East Kunlun Mountainsin Qinghai Province and its geological significance[J]. Geophysical and Geochemical Exploration, 2015,39(1):69-75.
[16] Han R S, Liu C, Huang Z, et al. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) District, Yunnan, South China[J]. Ore Geology Reviews, 2007,31(1):360-383.
[17] 韩润生, 陈进, 高德荣, 等. 构造地球化学在隐伏矿定位预测中的应用[J]. 地质与勘探, 2003,39(6):25-28.
[17] Han R S, Chen J, Gao D R, et al. Application of tectonic geochemistry ore-finding method in orientation prognosis of concealed ores[J]. Geology and Exploration, 2003,39(6):25-28.
[18] 郭泽华, 王雷, 韩润生, 等. 滇西云县红豆山铜矿构造地球化学特征及找矿预测[J]. 中国地质, 2019,46(1):178-190.
[18] Guo Z H, Wang L, Han R S, et al. Tectonic geochemical characteristics and ore prediction in Hongdoushan copper deposit, Yunxian area, Western Yunnan[J]. Geology in China, 2019,46(1):178-190.
[19] 韩润生. 隐伏矿定位预测的矿田(床)构造地球化学方法[J]. 地质通报, 2005,24(10):104-110.
[19] Han R S. Orefield/deposit tectonic-geochemistry method for the localization and prognosis of concealed orebodies[J]. Geological Bulletin of China, 2005,24(10):104-110.
[20] 邓军, 孙忠实, 杨立强, 等. 吉林夹皮沟金矿带构造地球化学特征分析[J]. 高校地质学报, 2000,6(3):405-411.
[20] Deng J, Sun Z S, Yang L Q, et al. Tectono-Geochemical Analysis of Jiapigou Gold Belt, Jilin Province[J]. Geological Journal of China Universities, 2000,6(3):405-411.
[21] 韩润生, 陈进, 李元, 等. 云南会泽麒麟厂铅锌矿床构造地球化学及定位预测[J]. 矿物学报, 2001(4):667-673.
[21] Han R S, Chen J, Li Y, et al. Tectono-geochemical features and orientation prognosis of concealed ores of Qilinchang Lead-Zinc deposit in Huize, Yunnan[J]. Acta Mineralogica Sinica, 2001(4):667-673
[22] 钱建平, 何胜飞, 王富民, 等. 安徽省廖家地区地质地球化学特征和构造地球化学找矿[J]. 物探与化探, 2008,32(5):519-524.
[22] Qian J P, He S F, Wang F M, et al. Geological and geochemical characteristics and tectono-geochemical prospecting work in Liaojia area, Anhui Province[J]. Geophysical and Geochemical Exploration, 2008,32(5):519-524.
[23] 范柱国, 秦德先, 谈树成, 等. 个旧老厂锡多金属矿田东部断裂构造地球化学异常特征[J]. 矿物学报, 2004,24(2):129-135.
[23] Fan Z G, Qin D X, Tan S C, et al. Geochemical anomaly signatures in the eastern Gejiu laochang tin polymetallic ore field[J]. Acta Mineralogica Sinica, 2004,24(2):129-135.
[24] 王力, 孟昭君, 毛政利. 构造地球化学方法在个旧锡矿外围找矿预测中的应用[J]. 矿床地质, 2002,21(S1):1197-1200.
[24] Wang L, Meng Z J, Mao Z L, et al. Application of tectogeochemistry in metallogenic prognosis in periphery of Gejiu Tin ore deposit[J]. Mineral Deposits, 2002,21(S1):1197-1200.
[25] 毛景文, 程彦博, 郭春丽, 等. 云南个旧锡矿田:矿床模型及若干问题讨论[J]. 地质学报, 2008,82(11):1455-1467.
[25] Mao J W, Chen Y B, Guo C L, et al. Gejiu Tin polymetallic ore-field: Deposit model and discussion for several points concerned[J]. Acta Geologica Sinica, 2008,82(11):1455-1467.
[26] Cheng Y, Mao J, Zhu X, et al. Iron isotope fractionation during supergene weathering process and its application to constrain ore genesis in Gaosong deposit, Gejiu district, SW China[J]. Gondwana Research, 2015,27(3):1283-1291.
doi: 10.1016/j.gr.2013.12.006
[27] Sun S Y. Study on the multi-episodic activity of faults in the Gaosong field of Gejiu tin deposits[J]. Acta Mineralogica Sinica, 2004.
[28] 庄永秋, 王任重, 杨书培, 等. 云南个旧锡铜多金属矿床[M]. 北京: 地震出版社, 1996.
[28] Zhuang Y Q, Wang R Z, Yang S P, et al. Gejiu tin copper polymetallic deposit, Yunnan[M]. Beijing: Earthquake Press, 1996.
[29] Zhao J, Zuo R, Chen S, et al. Application of the tectono-geochemistry method to mineral prospectivity mapping: a case study of the Gaosong tin-polymetallic deposit, Gejiu district, SW China[J]. Ore Geology Reviews, 2015,71:719-734.
doi: 10.1016/j.oregeorev.2014.09.023
[30] He F P, Wang Z, Chen F, et al. Identification and assessment of Sn-polymetallic prospects in the Gejiu western district, Yunnan (China)[J]. Journal of Geochemical Exploration, 2014,145:106-113.
doi: 10.1016/j.gexplo.2014.05.016
[31] Cheng Y, Mao J. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting[J]. Lithos, 2010,120(3):258-276.
doi: 10.1016/j.lithos.2010.08.013
[32] 秦德先, 黎应书, 范柱国, 等. 个旧锡矿地球化学及成矿作用演化[J]. 中国工程科学, 2006(1):30-39.
[32] Qin D X, Li Y S, Fan Z G, et al. The geochemistry and mineralization evolvement of Gejiu Tin ore deposits[J]. Strategic Study of CAE, 2006(1):30-39.
[33] 廖时理, 陈守余, 姚涛, 等. 个旧西凹铜—锡多金属矿床地球化学特征及地质意义[J]. 大地构造与成矿学, 2014,38(3):635-646.
[33] Liao S L, Chen S Y, Yao T, et al. Geochemical characteristics and geological significance of the Xi’ao Cu-Sn polymetallic deposit in the Gejiu area[J]. Geotectonica et Metallogenia, 2014,38(3):635-646.
[34] 杨宝富, 李彬, 魏超. 个旧老厂矿田东部矿床控矿因素、成矿规律及找矿预测[J]. 矿物学报, 2016,36(4):479-487.
[34] Yang B F, Li B, Wei C, et al. Ore-controlling factors, metallogenetic regularity and prospecting of eastern Laochang deposits, Gejjiu mine, Yunnan Province, China[J]. Acta Mineralogica Sinica, 2016,36(4):479-487.
[35] 陈守余, 赵鹏大, 童祥, 等. 个旧东区蚀变花岗岩型锡铜多金属矿床成矿特征及找矿意义[J]. 地球科学:中国地质大学学报, 2011,36(2):277-281.
[35] Chen S Y, Zhao P D, Tong X, et al. Metallogenic characteristics of western low altered Tin-Copper polymetallic deposit and its prospecting significance in east part of Gejiu, Yunnan[J]. Earth science:Journal of China University of Geosciences, 2011,36(2):277-281.
[36] Caron M E, Grasby S E, Ryan M C. Spring water trace element geochemistry: A tool for resource assessment and reconnaissance mineral exploration[J]. Applied Geochemistry, 2008,23(12):3561-3578.
doi: 10.1016/j.apgeochem.2008.07.020
[37] Zhu W, Sun Y, Guo J, et al. Prospects for study of tectono-geochemistry[J]. Progress in Natural Science:Materials International, 2003,13(3):161-165.
[38] Turekian K K, Wedepohl K H. Distribution of the elements in some major units of the earth’s crust[J]. Geological Society of America Bulletin, 1961,72(2):175.
doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
[39] 罗先熔. 勘查地球化学[M]. 北京: 冶金工业出版社, 2007.
[39] Luo X R. Exploration geochemistry [M]. Beijing: Metallurgical Industry Press, 2007.
[40] 袁玉涛. 化探数据处理方法对比研究[D]. 北京:中国地质大学(北京), 2015.
[40] Yuan Y T. Comparative study on geochemical data processing methods[D]. Beijing:China University of Geosciences (Beijing), 2015.
[41] 向中林, 顾雪祥, 王恩营, 等. 新疆博罗科努成矿带东段地球化学分形特征及找矿预测[J]. 河南理工大学学报:自然科学版, 2019,38(4):49-57.
[41] Xiang Z L, Gu X X, Wang E Y, et al. Geochemical fractal characteristics and prospecting prediction of the eastern section of theBoluokenu metallogenic belt, Xinjiang[J]. Journal of Henan Polytechnic University:Natural Science, 2019,38(4):49-57.
[42] Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994,51(2):109-130.
doi: 10.1016/0375-6742(94)90013-2
[43] Zuo R, Xia Q, Zhang D. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013,33:165-172.
doi: 10.1016/j.apgeochem.2013.02.009
[44] Zuo R, Jian W. Fractal/multifractal modeling of geochemical data: A review[J]. Journal of Geochemical Exploration, 2016,164:33-41.
doi: 10.1016/j.gexplo.2015.04.010
[45] Zhao J, Chen S, Zuo R. Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models[J]. Geochemistry: Exploration, Environment, Analysis, 2017,17(3):239-251.
doi: 10.1144/geochem2016-013
[46] 谢淑云, 鲍征宇. 地球化学场的连续多重分形模式[J]. 地球化学, 2002,31(2):191-200.
[46] Xie S Y, Bao Z Y. Continuous multifractal model of geochemical field[J]. Geochimica, 2002,31(2):191-200.
[47] 成秋明. 多维分形理论和地球化学元素分布规律[J]. 地球科学, 2000,25(3):311-318.
[47] Cheng Q M. Multidimensional fractal theory and distribution law of geochemical elements[J]. Earth Science, 2000,25(3):311-318.
[48] 刘世宝, 陈鑫, 国显正, 等. 分形(多重分形)在区域化探数据处理中的应用——以柴北缘荒漠戈壁景观区为例[J]. 物探与化探, 2016(3):550-556.
doi: 10.11720/wtyht.2016.3.17
[48] Liu S B, Chen X, Guo X Z, et al. Fractal/multifractal modeling of geochemical exploration data in desert landscape area of QaidamBasin[J]. Geophysical and Geochemical Exploration, 2016(3):550-556.
[1] 翁望飞, 王德恩, 王邦民, 丁勇, 王拥军. 安徽省祁门—黟县地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2020, 44(1): 1-12.
[2] 龚晶晶, 杨剑洲, 马生明, 苏磊. 利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常[J]. 物探与化探, 2020, 44(1): 122-131.
[3] 孙社良, 冯增会, 黄孝波, 曾凡淼, 张献河, 牛建忠, 朱昌杰, 陈士海. 新疆汉水泉地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2018, 42(6): 1116-1124.
[4] 李伟, 刘翠辉, 贺根文, 温珍连, 陈琪. 壤中汞气测量在于都营脑隐伏矿产勘查中的应用[J]. 物探与化探, 2017, 41(5): 840-845.
[5] 王磊, 韩润生, 王加昇. 地球化学勘查的新技术及发展趋势[J]. 物探与化探, 2015, 39(4): 686-690.
[6] 安国英. 青海省东昆仑中段地区构造地球化学特征及地质意义[J]. 物探与化探, 2015, 39(1): 69-75.
[7] 陆顺富, 曾键年, 李锦伟, 智超, 余冯力. 铜陵—池州地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2014, 38(2): 227-233.
[8] 闫永生, 李向文, 聂春雨, 徐伦先, 刘玉, 康建坤, 脱立文. 黑龙江富克山地区水系沉积物测量地球化学特征及找矿远景预测[J]. 物探与化探, 2013, 37(1): 23-29.
[9] 张杰, 邓晓红, 郭鑫, 武军杰, 王兴春. 地—井TEM在危机矿山深部找矿中的应用实例[J]. 物探与化探, 2013, 37(1): 30-34.
[10] 邰振华, 张凤旭, 吴燕冈. 道朗和都格地区重磁场特征与找矿远景区[J]. 物探与化探, 2011, 35(6): 762-767.
[11] 崔晓亮, 刘婷婷, 王文恒, 景明, 白云. 东昆仑布青山地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2011, 35(5): 573-578.
[12] 于长春, 熊盛青, 刘士毅, 范正国, 眭素文. 直升机航磁方法在大冶铁矿区深部找矿中的见矿实例[J]. 物探与化探, 2010, 34(4): 435-439.
[13] 余学中, 梁月明, 丛丽娟. 高精度航空物探资料在二连浩特—东乌旗地区找矿中的应用[J]. 物探与化探, 2010, 34(3): 269-274.
[14] 夏祥标, 郑来林. 普迟亚地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2009, 33(6): 626-629.
[15] 张大莲, 刘天佑, 陈石羡, 詹应林. 粒子群算法在磁测资料井地联合反演中的应用[J]. 物探与化探, 2009, 33(5): 571-575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com