Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 558-567    DOI: 10.11720/wtyht.2019.1478
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
赣中大王山石英脉型钨钼多金属矿床成岩成矿年代学及其地质意义
杨庆坤1, 张小亮2, 华琛1, 于玉帅3, 周万蓬1
1. 东华理工大学 核资源与环境国家重点实验室,江西 南昌 330013
2. 中国地质大学(北京) 地球科学与资源学院,北京 100083
3. 中国地质调查局 武汉地质调查中心,湖北 武汉 430205
Petrogenic and metallogenic geochronology and its geological significance of the Dawangshan quartz vein type scheelite-molybdenite polymetallic deposit in central Jiangxi Province
Qing-Kun YANG1, Xiao-Liang ZHANG2, Chen HUA1, Yu-Shuai YU3, Wan-Peng ZHOU1
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
3. China Geological Survey, Wuhan Center, Wuhan 430205, China
全文: PDF(6413 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

赣中大王山钨钼多金属矿床位于钦杭结合带西缘大王山—于山W-U-Sn-Au多金属成矿带,为典型的石英脉型矿床,其赋矿岩体具有多阶段特征。通过LA-ICPMS锆石U-Pb测年技术,得到晚阶段细粒花岗岩成岩年龄为145.1±0.89 Ma,与早阶段形成的中粗粒花岗岩形成时间接近(147.8±1.9 Ma);利用辉钼矿Re-Os同位素测年技术,得到成矿年龄为147.6±1.8 Ma,表明该矿床形成于晚侏罗世,与南岭地区及其周边的燕山期石英脉型钨钼多金属矿床的成岩、成矿时代一致。辉钼矿中Re的含量具有指示成矿物质来源的重要参考价值,大王山钨多金属矿床的辉钼矿中Re含量较低,为2 215×10 -9~10 183×10 -9,与以钨为主、共生或伴生钼的矿床特征相吻合,指示其成矿物质主要来自于壳源或壳幔混合源,即在160~110 Ma之间,古太平洋板块与欧亚板块之间的主应力作用方向发生转变,促使我国东部岩浆活动频繁,岩浆期后热液与围岩碱交代明显,大量成矿物质被萃取,并在成矿有利部位富集。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨庆坤
张小亮
华琛
于玉帅
周万蓬
关键词 辉钼矿同位素测年成矿年龄微量元素大王山    
Abstract

The Dawangshan tungsten-molybdenum polymetallic deposit in Jiangxi province is a typical quartz vein type deposit, lies in the Dawangshan-Yudu Cu-Mo-Au-Ag-Pb-Zn ore belt. The ore-bearing rock mass is characterized by multiple stages. According to the LA-ICPMS zircon U-Pb dating technique, the diagenetic age of fine-grained granite in the late stage is 145.1±0.89 Ma, which is close to the formation time of medium-grained granite formed in the early stage (147.8±1.9 Ma). Using the Re-Os isotope dating technique of molybdenite, the metallogenic age was 147.6±1.8 Ma. Indicating that the deposit was formed in the late Jurassic, It is consistent with the diagenesis and mineralization age of Yanshanian quartz vein type tungsten molybdenum polymetallic deposit in Nanling area. Re content of molybdenite has important reference value to indicate the source of mineralization materials. The Dawangshan tungsten-molybdenum polymetallic deposit is related with Yanshanian granites, the Re contents of molybdenite samples is 2 215×10 -9~10 183×10 -9, It is consistent with the characteristics of tungsten deposit associated molybdenum,which indicates that the ore-forming materials are likely to come from the crust or crust-mantle-derived ones. In combination with metallogenic geological background, the author infers that the Dawangshan deposit is associated with the subduction of the Paleo-Pacificocean plate beneath the Eurasian continent. It is proposed that the ore-forming materials were extracted by alkali metasomatism between the magma and the wall rock and then concentrated in the favourable areas.

Key wordsmolybdenite    isotope dating    mineralization age    trace elements    Dawangshan
收稿日期: 2018-12-27      出版日期: 2019-05-31
:  P618.65  
  P611.1  
基金资助:江西省自然科学基金项目(20171BAB213026);国家自然科学基金项目(41602069);江西省教育厅科学技术研究项目(GJJ150554);放射性地质与勘探技术国防重点学科实验室开放基金项目(RGET1402)
作者简介: 杨庆坤(1984-),男,讲师,博士,毕业于中国地质大学(北京),主要从事区域成矿学研究工作。Email: 197267245@qq.com
引用本文:   
杨庆坤, 张小亮, 华琛, 于玉帅, 周万蓬. 赣中大王山石英脉型钨钼多金属矿床成岩成矿年代学及其地质意义[J]. 物探与化探, 2019, 43(3): 558-567.
Qing-Kun YANG, Xiao-Liang ZHANG, Chen HUA, Yu-Shuai YU, Wan-Peng ZHOU. Petrogenic and metallogenic geochronology and its geological significance of the Dawangshan quartz vein type scheelite-molybdenite polymetallic deposit in central Jiangxi Province. Geophysical and Geochemical Exploration, 2019, 43(3): 558-567.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1478      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/558
Fig.1  大王山矿床区域构造及矿区地质图
a—矿床大地构造位置图;b—矿床区域地质图;c—矿区地质图
Fig.2  大王山钨钼多金属矿集区赋矿花岗岩及矿石照片
a—赋矿细粒花岗岩侵入到中粒花岗岩中;b—伟晶岩脉;c—早期钨钼多金属矿囊被后期含矿石英脉切割;d—矿囊;e—后期石英晶洞中的硫化矿;f—黄铁矿-黄铜矿-黑钨矿-辉钼矿共生;g,h—黑钨矿-黄铜矿-辉钼矿(反射单偏光);Mlt—黑钨矿;Ccp—黄铜矿;Py—黄铁矿;Mo—辉钼矿
Fig.3  大王山矿床赋矿花岗岩锆石阴极发光(CL)206Pb/238U年龄(单位:Ma)
Fig.4  大王山钨钼多金属矿床赋矿花岗岩锆石 U-Pb 谐和曲线
样号 w(U)
/10-6
w(Th)
/10-6
w(Th)
/w(U)
同位素比值 年龄/Ma
207Pb 206Pb 207Pb 235U 206Pb 238U 208Pb 232Th 207Pb 206Pb 207Pb 235U 206Pb 238U 208Pb 232Th
DWS17-1-1 863 364 0.42 0.0502 0.00106 0.1575 0.00345 0.0228 0.00030 0.0074 0.00018 204.2 49 148.5 3 145.4 2 149.9 4
DWS17-1-2 1463 506 0.35 0.0485 0.00096 0.1528 0.00314 0.0228 0.00027 0.0080 0.00016 124.2 47 144.4 3 145.6 2 160.3 3
DWS17-1-3 331 192 0.58 0.0487 0.00200 0.1530 0.00637 0.0229 0.00039 0.0077 0.00022 135.2 97 144.6 6 146.1 2 154.6 4
DWS17-1-4 3534 900 0.25 0.0510 0.00128 0.1596 0.00572 0.0228 0.00064 0.0080 0.00025 241.3 58 150.3 5 145.3 4 160.4 5
DWS17-1-5 416 225 0.54 0.0495 0.00163 0.1542 0.00507 0.0227 0.00037 0.0087 0.00028 169.5 77 145.6 4 144.6 2 174.1 6
DWS17-1-6 235 108 0.46 0.0487 0.00163 0.1525 0.00514 0.0228 0.00032 0.0078 0.00022 132.0 79 144.1 5 145.1 2 157.9 4
DWS17-1-7 309 212 0.68 0.0485 0.00145 0.1512 0.00452 0.0227 0.00031 0.0084 0.00023 124.0 70 143.0 4 144.6 2 168.9 5
DWS17-1-8 197 100 0.51 0.0506 0.00155 0.1592 0.00508 0.0228 0.00031 0.0074 0.00027 221.6 71 150.0 4 145.5 2 149.4 5
DWS17-1-9 595 277 0.47 0.0507 0.00189 0.1587 0.00734 0.0228 0.00056 0.0072 0.00042 225.6 86 149.6 6 145.5 4 145.1 8
DWS17-1-10 543 168 0.31 0.0489 0.00148 0.1540 0.00482 0.0229 0.00036 0.0082 0.00026 144.2 71 145.5 4 146.1 2 166.0 5
DWS17-1-11 332 176 0.53 0.0490 0.00225 0.1539 0.00634 0.0230 0.00057 0.0086 0.00027 150.2 108 145.4 6 146.7 4 173.2 5
DWS17-1-12 514 235 0.46 0.0485 0.00091 0.1512 0.00308 0.0226 0.00029 0.0077 0.00015 126.1 44 143.0 3 143.8 2 155.1 3
DWS17-1-13 328 168 0.51 0.0490 0.00137 0.1558 0.00482 0.0229 0.00032 0.0084 0.00020 146.7 66 147.0 4 146.2 2 168.6 4
DWS17-1-14 687 304 0.44 0.0497 0.00129 0.1568 0.00397 0.0230 0.00034 0.0076 0.00018 182.9 61 147.9 3 146.4 2 153.6 4
DWS17-1-15 209 156 0.75 0.0486 0.00198 0.1522 0.00633 0.0229 0.00039 0.0080 0.00027 128.5 96 143.9 6 145.9 2 161.9 5
DWS17-1-16 266 140 0.53 0.0500 0.00165 0.1557 0.00493 0.0228 0.00031 0.0077 0.00020 195.9 77 146.9 4 145.2 2 154.8 4
DWS17-1-17 360 164 0.46 0.0493 0.00154 0.1518 0.00480 0.0224 0.00038 0.0082 0.00026 161.1 73 143.5 4 142.9 2 164.4 5
DWS17-1-18 187 94 0.50 0.0511 0.00231 0.1565 0.00615 0.0227 0.00064 0.0084 0.00037 246.9 104 147.6 5 144.8 4 169.0 7
DWS17-1-19 405 205 0.51 0.0506 0.00177 0.1559 0.00551 0.0224 0.00031 0.0074 0.00024 222.0 81 147.1 5 142.7 2 148.1 5
DWS17-1-20 291 183 0.63 0.0498 0.00182 0.1559 0.00550 0.0229 0.00032 0.0079 0.00022 184.2 85 147.2 5 145.9 2 159.1 4
DWS17-1-21 493 221 0.45 0.0494 0.00141 0.1537 0.00386 0.0228 0.00038 0.0079 0.00022 168.8 67 145.1 3 145.2 2 158.5 4
DWS17-1-22 379 169 0.45 0.0505 0.00156 0.1569 0.00442 0.0228 0.00036 0.0079 0.00025 218.8 72 148.0 4 145.4 2 158.4 5
DWS17-1-23 378 184 0.49 0.0486 0.00152 0.1519 0.00466 0.0228 0.00036 0.0075 0.00025 130.0 74 143.6 4 145.0 2 151.2 5
DWS17-1-24 210 107 0.51 0.0493 0.00202 0.1535 0.00635 0.0227 0.00035 0.0075 0.00027 160.7 96 145.0 6 144.6 2 151.1 5
Table 1  大王山矿床细粒花岗岩锆石LA-ICPMS U-Pb同位素分析结果
样品号 w(Re)/10-9 w(Os)/10-9 w(187Re)/10-9 w(187Os)/10-9 模式年龄/Ma
测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度
DWS17-2-1 2215 18 0.0286 0.0122 1392 11 3.45 0.02 148.5 2.1
DWS17-2-2 7003 54 0.0003 0.0159 4401 34 10.82 0.08 147.4 2.1
DWS17-2-3 6534 65 0.0003 0.0283 4107 41 10.11 0.07 147.6 2.3
DWS17-2-4 6290 55 0.0003 0.0220 3953 35 9.72 0.07 147.4 2.2
DWS17-2-5 10183 86 0.0003 0.0442 6400 54 15.92 0.11 149.1 2.2
DWS17-2-6 2927 27 0.0001 0.0251 1840 17 4.46 0.03 145.3 2.3
Table 2  大王山钨钼多金属矿床中辉钼矿Re-Os同位素数据
Fig.5  大王山钨多金属矿床辉钼矿Re-Os同位素等时线和模式年龄加权平均值
产地 矿床名称 成因类型(岩体名称) 成矿(成岩)年龄值/Ma 测年方法 数据来源
赣南 淘锡坑 石英脉型
中粒似斑状黑云母花岗岩
154.4±3.8
158.7±3.9、157.6±3.5
Re-Os
SHRIMP
陈郑辉等[10]
郭春丽等[11]
赣南 摇篮寨 石英脉型 155.8±2.8 Re-Os 丰成友等[12]
赣南 樟斗 石英脉型 149.1±7.1 Re-Os 丰成友等[12]
赣南 茅坪 石英脉型 158.2~141.4 Re-Os 曾载淋等[13]
赣南 牛岭 石英脉型 154.9±4.1 Re-Os 丰成友等[12]
赣南 木梓园 石英脉型
中细粒含黑云母花岗岩
151.1±8.5
153.3±1.9
Re-Os
单颗粒锆石U-Pb
张文兰等[14]
张文兰等[14]
粤北 师姑山 石英脉型 154.2±2.7 Re-Os 付建明等[15]
粤北 石人嶂 石英脉型 159.1±2.2 Re-Os 付建明等[15]
粤北 红岭 石英脉型 159.1±1.5 Re-Os 王小飞等[16]
闽西 行洛坑 石英脉型 156.3±4.8 Re-Os 张家菁等[17]
赣中 浒坑 石英脉型 149.1±2.0~150.7±3.7 Re-Os Liu et al[18]
赣中 下桐岭 石英脉型 152±3.3 Re-Os 李光来等[19]
赣中 麻鸡嶂 石英脉型
碱长花岗岩
161.3~157.1
152.5±1.3
Re-Os
LA-ICPMS
宋凯林等[20]
石连成等[21]
赣中 大王山 细粒碱长花岗岩
石英脉型
145.1±0.89
147.6±1.8
LA-ICPMS
Re-Os
本文
本文
Table 3  南岭东段及赣中地区部分石英脉型钨多金属矿床辉钼矿及其相关花岗岩体成矿—成岩时限
[1] 杨庆坤, 郭福生, 于玉帅 , 等. 赣中大王山钨多金属矿床中碱长花岗岩成因:来自LA-ICP-MS锆石U-Pb年代学、岩石地球化学的制约[J]. 高校地质学报, 2018,24(12):856-871.
[1] Yang Q K, Guo F S, Yu Y S , et al. Genesis of alkali-feldspar granite at Dawangshan tungsten polymetallic ore concentration area in central Jiangxi Province: Constraints from LA-ICP-MS zircon U-Pb chronology and geochemistry[J]. Geological Journal of China Universites, 2018,24(12):856-871.
[2] 杨庆坤, 宣璞琰, 张小亮 . 赣中大王山钨多金属矿床流体包裹体及H-O-S同位素特征[J]. 地质科学, 2017,52(4):1282-1296.
[2] Yang Q K, Xuan P Y, Zhang X L . Immiscibility and mineralization of Dawangshan tungsten polymetallic deposit, central Jiangxi province[J]. Chinese Journal of Geology, 2017,52(4):1282-1296.
[3] 杨庆坤, 张小亮, 华琛 , 等. 赣中大王山钨钼多金属矿集区辉钼矿微量元素地球化学特征[J].矿物岩石, 2018(2):59-69.
[3] Yang Q K, Zhang X L, Hua C , et al. Geochemical characteristics of trace element of the molybdenite in the Dawangshan tungsten molybdenum polymetallic ore concentration area, central Jiangxi province[J]. J Mineral Petrol, 2018(2):59-69.
[4] Shirey S B, Walker R J . Carius Tube dgestion for low-blank Rhenium-Osmium analysis[J]. Analytical Chemistry, 1995,67(13):2136-2141.
doi: 10.1021/ac00109a036
[5] Jackson S E, Pearson N J, Griffin W L , et al. The application of laser ablation inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical geology, 2004,211(1-2):47-69.
doi: 10.1016/j.chemgeo.2004.06.017
[6] Griffin W L, Belousova E A, Shee S R , et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrial zircons[J]. Precambrian Research, 2004,131(3-4):231-282.
doi: 10.1016/j.precamres.2003.12.011
[7] Vavra G, Gebauer D, Schmid R , et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996,122(4):337-358.
doi: 10.1007/s004100050132
[8] Smoliar M L, Walker R J, Morgan J W . Re-Os ages of group IA, IIA, IVA and IVB iron meteotites[J]. Science, 1996,271:1099-1102.
doi: 10.1126/science.271.5252.1099
[9] 陈文, 万渝生, 李华芹 , 等. 同位素地质年龄测定技术及应用[J]. 地质学报, 2011,85(11):1917-1947.
[9] Chen W, Wan Y S, Li H Q , et al. Isotope geochronology: technique and application[J]. Acta Geologica Sinica, 2011,85(11):1917-1947.
[10] 陈郑辉, 王登红, 屈文俊 , 等. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代[J]. 地质通报, 2006,25(4):496-501.
[10] Chen Z H, Wang D H, Qu W J , et al. Geologcal characteristics and mineraliazation age of the Taoxikeng tungsten deposit in Chongyi county, southern Jiangxi Province, China[J]. Geological Bullentin of China, 2006,25(4):496-501.
[11] 郭春丽, 王登红, 陈毓川 , 等. 赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定[J]. 矿床地质, 2007,26(4):432-442.
[11] Guo C L, Wang D H, Chen Y C , et al. Precise zircon SHRIMP U-Pb and quartz vein Rb-Sr dating of Mesozoic Taoxikeng tungsten polymetal lic deposit in southern Jiangxi[J]. Mineral Deposits, 2007,26(4):432-442.
[12] 丰成友, 丰耀东, 许建祥 , 等. 赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据[J]. 中国地质, 2007,34(4):642-650.
[12] Feng C Y, Feng Y D, Xu J X , et al. Isotope chronological evidence for Upper Jur assic petrogenesis and miner alization of alter ed gr anite-type tungsten deposits in the Zhangtiantang ar ea, southern J iangxi[J]. Geology in China, 2007,34(4):642-650.
[13] 曾载淋, 张永忠, 朱祥培 , 等. 赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质意义[J]. 岩矿测试, 2009,28(3):209-214.
[13] Zeng Z L, Zhang Y Z, Zhu X P , et al. Re-Os isotopic dating of molybdenite from the Maoping Tungsten-Tin deposit in Chongyi county of southern Jiangxi Province and its geological significanc[J]. Rock and Mineral analysis, 2009,28(3):209-214.
[14] 张文兰, 华仁民, 王汝成 , 等. 赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定[J]. 地质学报, 2009,83(5):659-670.
[14] Zhang W L, Hua R M, Wang R C , et al. New Dating of the Piaotang Granite and Related Tungsten Mineral ization in Southern Jiangxi[J]. Acta Geologica Sinica, 2009,83(5):659-670.
[15] 付建明, 李华芹, 屈文俊 , 等. 粤北始兴地区石英脉型钨矿成矿时代的确定及其地质意义[J]. 大地构造与成矿学, 2008,32(1):57-62.
[15] Fu J M, Li H Q, Qu W J , et al. Determination of mineralization epoch of quartz-vein type tungsten deposits in Shixing region, northern Guangdong and its geologcial significance[J]. Geotectonica et Metallogeni, 2008,32(1):57-62.
[16] 王小飞, 戚华文, 胡瑞忠 , 等. 粤北红岭钨矿中辉钼矿Re-Os同位素年代学及其地质意义[J]. 矿床地质, 2010,29(3):415-426.
[16] Wang X F, Qi W H, Hu R Z , et al. Re-Os isotopic chronology of molybdenites from Hongling tungsten deposit of Guangdong Province and its geological significance[J]. Mineral deposits, 2010,29(3):415-426.
[17] 张家菁, 陈郑辉, 王登红 , 等. 福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义[J]. 大地构造与成矿学, 2008,32(1):92-97.
[17] Zhang J J, Chen Z H, Wang D H , et al. Geological characteristics and metallogenic epoch of the Xinggluoleng tungsten deposit, Fujian province[J]. Geotectonica et Metallogeni, 2008,32(1):92-97.
[18] Liu J, Mao J W, Ye H S , et al. Geology, geochemistry and age of the Hukeng tungsten deposit, Southern China[J]. Ore Geology Reviews, 2011,43(1):50-61.
doi: 10.1016/j.oregeorev.2011.09.004
[19] 李光来, 华仁民, 黄小娥 , 等. 赣中下桐岭钨矿辉钼矿Re-Os年龄及其地质意义[J]. 矿床地质, 2011,30(6):1075-1084.
[19] Li G L, Hua R M, Huang X E , et al. Re-Os isotopic age of molybdenite from Xiatongling tungsten deposit, central Jiangxi Province, and its geological impl ications[J]. Mineral deposits, 2011,30(6):1075-1084.
[20] 宋凯林, 张树明, 魏正宇 , 等. 赣中麻鸡嶂钼钨多金属矿化带辉钼矿Re-Os年龄[J]. 东华理工大学学报:自然科学版, 2014,37(1):21-25.
[20] Song K L, Zhang S M, Wei Z Y , et al. Molybdenite Re-Os age and its geological significance of Majizhang molybdenum tungsten polymetallic mineralization belt in the central of Jiangxi[J]. Journal of East China Institute of Technology:Natural Science, 2014,37(1):21-25.
[21] 石连成, 谢财富, 郭福生 , 等. 赣中乐安与钨锡多金属矿化有关的山心岩体地质地球化学特征、锆石A-ICP-MS年龄及其成矿意义[J]. 地质学报, 2015,89(6):1070-1084.
[21] Shi L C, Xie C F, Guo F S , et al. Geological, geochemical characteristics and LA-ICP-MS dating of the Shanxin plutons related to tungsten-tin-polymetallic mineralization, Le’an central Jiangxi and its mineralization significance[J]. Acta Geologica Sinica, 2015,89(6):1070-1084.
[22] 鲁海峰, 杨延乾, 何皎 , 等. 东昆仑哈陇休玛钼(钨)矿床花岗闪长斑岩锆石U-Pb及辉钼矿Re-Os同位素定年及其地质意义[J]. 矿物岩石, 2017,37(2):33-39.
[22] Zircon U-Pb age dating for granodiorite porphyry and molybdenite Re-Os isotope dating of Halongxiuma molybdenum (tungsten) deposit in the east Kunlun area and its geological significance[J]. J Mineral Petrol, 2017,37(2):33-39.
[23] Foseter J G, Lambert D D, Frick R R , et al. Re-Os isotopic evidence for genesis of Archean nickel ores from uncontaminated komatiites[J]. Nature, 1996,382:703-706.
doi: 10.1038/382703a0
[24] 胡受奚 . 华北与华南古板块拼合带地质和成矿[M]. 南京: 南京大学出版社, 1988,588.
[24] Hu S X. Geology and mineralization of the convergence zone of the north and south China paleoplates[M]. Nanjing: Nanjing university press, 1988,588.
[25] Stein H J, Markey R J, Morgan J W , et al. The remarkable Re-Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001,13(6):479-486.
doi: 10.1046/j.1365-3121.2001.00395.x
[26] 杜安道, 屈文俊, 李超 , 等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试, 2009,28(3):288-304.
[26] Du A D, Qu W J, Li C , et al. A review on the development of Re-Os isotopic dating methods and Techniques[J]. Rock and Mineral Analysis, 2009,28(3):288-304.
[27] 黄典豪, 吴澄宇, 杜安道 , 等. 东秦岭地区钼矿床的铼锇同位素年龄及其意义[J]. 矿床地质, 1994,13(3):221-230.
[27] Huang D H, Wu C Y, Du A D , et al. Re-Os isotope ages of molybdenum deposits in east Qinling and their significance[J]. Mineral Deposits, 1994,13(3):221-230.
[28] 黄典豪, 杜安道, 吴澄宇 , 等. 华北地台钼(铜)矿床成矿学研究——辉钼矿的铼-锇年龄及其地质意义[J]. 矿床地质, 1996,15(4):289-297.
[28] Huang D H, Du A D, Wu C Y , et al. Metallochronology of molybdenum(-copper) deposits in the norht China platform: Re-Os age of molybdenite and its geological significance[J]. Mineral Deposits, 1996,15(4):289-297.
[29] 李红艳, 毛景文, 孙亚莉 , 等. 柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究[J]. 地质论评, 1996,42(3):261-267.
[29] Li H Y, Mao J W, Sun Y L , et al. Re-Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, southern Hunan[J]. Geological Review, 1996,42(3):261-267.
[30] Mao J W, Zhang Z C, Zhang Z H . Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimca Acta, 1999,63(11/12):1815-1818.
doi: 10.1016/S0016-7037(99)00165-9
[31] 任纪舜, 牛宝贵, 和政军 , 等. 中国东部的构造格局和动力演化[G]//任纪舜, 杨巍然. 中国东部岩石圈结构与构造岩浆氧化. 北京: 地震出版社, 1998: 1-12.
[31] Ren J S, Niu B G, He Z J , et al. Tectonic structure and dynamic evolution in eastern China [G]// Ren J S, Yang E R. Lithospheric structure and tectonic magmatic oxidation in eastern China . Beijing: Earthquake Press, 1998: 1-12.
[32] 耿树方, 刘平, 郑洪伟 , 等. 对中国东部中生代动力学机制的新认识[J]. 地质通报, 2012,31(7):1061-1068.
[32] Geng S F, Liu P, Zheng H W , et al. A tentative discussion and new recognition of Mesozoic geodynamic mechanism in eastern China[J]. Geological Bulletin of China, 2012,31(7):1061-1068.
[33] 牛宝贵, 和政军, 宋彪 , 等. 张家口组火山岩SHRIMP定年及其重大意义[J]. 地质通报, 2000,19(4):140-141.
[33] Niu B G, He Z J, Song B , et al. SHRIMP age of Zhangjiakou formation and its significance[J]. Geological Bulletin of China, 2000,19(4):140-141.
[34] 毛景文, 王志良 . 中国东部大规模成矿时限及其动力学背景的初步探讨[J]. 矿床地质, 2003,22(2):289-296.
[34] Mao J W, Wang Z L . A preliminary study on time limits and geodynamic setting of large-scale metallogeny in east China[J]. Mineral Deposits, 2003,22(2):289-296.
[35] 毛景文, 张作衡, 余金杰 , 等. 华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J]. 中国科学:D辑, 2003,33(4):289-300.
[35] Mao J W, Zhang Z H, Yu J J , et al. Geodynamic background of Mesozoic large-scale mineralization in north China: implications from precise dating of metal deposits[J]. Science in China:Series D, 2003,33(4):289-300.
[36] 李献华, 胡瑞忠, 饶冰 . 粤北白垩纪基性岩脉的年代学与地球化学[J]. 地球化学, 1997,26(2):14-31.
[36] Li X H, Hu R Z, Rao B . Geochronology and geochemistry of cretaceous mafic dikes from northern Guangdong[J]. Geochimica, 1997,26(2):14-31.
[37] 华仁民, 陈培荣, 张文兰 , 等. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 2005,24(2):99-107.
[37] Hua R M, Chen P R, Zhang W L , et al. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 2005,24(2):99-107.
[38] 杜乐天 . 烃碱流体地球化学原理——重论岩浆热液及成矿作用[M]. 北京: 科学出版社, 1996.
[38] Du L T. Hydrocarbon-alkali fluid geochemistry-on magmatic hydrothermal and mineralization[M]. Beijing: Science press, 1996.
[1] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[2] 刘纪峰, 白德胜, 张凯涛, 王金路, 卫建征, 苏阳艳. 河南方城刘营萤石矿稀土元素特征及成矿年龄[J]. 物探与化探, 2021, 45(3): 639-644.
[3] 廖圣兵, 褚平利, 段政, 黄文成, 朱延辉, 舒徐洁. 赣西北九岭中北部晚侏罗世S型花岗岩成矿专属性分析[J]. 物探与化探, 2019, 43(5): 1003-1014.
[4] 严明书, 吴春梅, 蒙丽, 丁相伦, 董攀, 邓海, 雷家立, 龚媛媛, 鲍丽然. 重庆市黔江猕猴桃果园土壤养分状况分析[J]. 物探与化探, 2019, 43(5): 1123-1130.
[5] 严明书, 黄剑, 何忠庠, 鲍丽然, 罗宇洁. 地质背景对土壤微量元素的影响——以渝北地区为例[J]. 物探与化探, 2018, 42(1): 199-205.
[6] 郝立波, 田密, 赵新运, 赵昕, 张瑞森, 谷雪. 基于实码加速遗传算法的投影寻踪模型在圈定水系沉积物地球化学异常中的应用——以湖南某铅锌矿床为例[J]. 物探与化探, 2016, 40(6): 1151-1156.
[7] 刘银飞, 孙彬彬, 贺灵, 曾道明, 刘占元, 周国华. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
[8] 杨超. 陕西双王金矿地球化学特征及其成因分析[J]. 物探与化探, 2016, 40(2): 296-302.
[9] 谢小占. 广东怀集高凤矿区地球化学特征[J]. 物探与化探, 2016, 40(2): 303-309.
[10] 孙彬彬, 张学君, 刘占元, 周国华, 张必敏, 陈亚东. 地电化学异常形成机理初探[J]. 物探与化探, 2015, 39(6): 1183-1187.
[11] 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 多目标化探数据与油气藏指标特征的相关性研究[J]. 物探与化探, 2015, 39(3): 466-472.
[12] 张元培, 黄春娟, 孙卫国, 骆必继. 秭归地区闪长岩岩体风化壳微量元素地球化学特征[J]. 物探与化探, 2012, 36(5): 755-759.
[13] 栾进华, 程军, 王伟, 黄波, 蒙炳儒, 秦林. 奉节脐橙种植区土壤地球化学特征[J]. 物探与化探, 2011, 35(6): 829-832.
[14] 李广之, 陈银节, 尹红军, 宣海波. 近地表土壤中可溶态阴离子的石油地质意义[J]. 物探与化探, 2011, 35(2): 198-202.
[15] 吴富强, 赵培松, 李朝旭.  昆明东川区播卡金矿地球化学特征与成因[J]. 物探与化探, 2011, 35(1): 28-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com