Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 338-350    DOI: 10.11720/wtyht.2019.1446
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
东北平原区地块尺度土地质量地球化学评价合理采样密度研究
彭敏1,2,3,4, 李括1,2,3,4, 刘飞2,3,4, 唐世琪2,3,4, 马宏宏2,3,4, 杨柯2,3,4, 杨峥2,3,4, 郭飞2,3,4, 成杭新2,3,4
1. 中国地质大学(北京) 地球科学与资源学院,北京 100083
2. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3. 中国地质调查局 土地质量地球化学调查评价研究中心,河北 廊坊 065000
4. 中国地质科学院 地球表层碳—汞地球化学循环重点实验室,河北 廊坊 065000;
Reasonable sampling density for land parcel scale geochemical assessment on land quality in Northeast China Plain
Min PENG1,2,3,4, Kuo LI1,2,3,4, Fei LIU2,3,4, Shi-Qi TANG2,3,4, Hong-Hong MA2,3,4, Ke YANG2,3,4, Zheng YANG2,3,4, Fei GUO2,3,4, Hang-Xin CHENG2,3,4
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2. Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China;
3. Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
4. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth’s Critical Zone, Chinese Academy of Geological Sciences, Langfang 065000, China.;
全文: PDF(8802 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

选择吉林省公主岭市大岭地区作为东北平原区典型代表区域开展土壤元素空间变异性、经典统计学合理取样数及不同采用密度数据空间插值对比研究。结果表明:①受地形平坦及成土母质相对单一等因素影响,研究区土壤元素空间变异性总体较小,大部分以轻中度变异为主(变异系数<15%),受人为因素影响较大的Cd、Hg变异系数分别为35.3%、136.6%,属于高度变异。②经典统计学确定的研究区合理采样数为80,该样本量可在95%的置信区间及允许误差为30%的条件下反应区内土壤元素含量的均值与方差,但因未考虑样本的空间属性,不足以反应区内土壤元素空间变异特征,具有一定的局限性。③通过对均匀抽稀后4种不同采样密度数据与实测数据空间插值对比研究,在定量评估空间插值相对误差、地块预测值相对误差及预测等级与实测等级一致性的基础上,结合土地质量地球化学调查工作精度要求,提出研究区地块尺度地球化学评价工作合理采样密度为8个点/km 2,该密度可在确保评价精度的前提下,大幅减少采样数量和工作成本。上述结论为东北平原及类似地区大面积开展地块尺度土地质量地球化学评价工作提供了关键的技术支撑,对进一步完善土地质量地球化学评价方法技术具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭敏
李括
刘飞
唐世琪
马宏宏
杨柯
杨峥
郭飞
成杭新
关键词 地块尺度土地质量地球化学评价合理采样密度空间变异性空间插值东北平原    
Abstract

In order to identify the reasonable sampling density for land parcel scale geochemical assessment on land quality in Northeast China Plain, the authors studied spatial variability of elements in soils as well as reasonable sampling size based on classic statistics and conducted a thorough comparison of interpolation accuracies at four sampling densities in a typical area in Gongzhuling City of Jilin Province. As the area is dominated by flat land and the soils parent materials are mainly homogeneous sediments, most of elements in soils in this area display a minor to moderate variability, Cd and Hg which are sensitive to human activities have a significant higher coefficient of variation of 35.3% and 136.6%, respectively. Classic statistics show that sampling size of 80 is sufficient for providing a reliable estimation of mean and variance for the elements concentration in soils in this area ( under a P value of 95% and Er tolerance level of 30%); however, classical statistics could not make out the spatial allocation of soil properties at the unsampled locations. By comparing the relative error of spatial interpolation, the predicted value for land parcel and the predicted classes at four sampling densities, the authors suggest that the reasonable sampling density is 8 samples per square kilometer for land parcel scale geochemical assessment on land quality in the study area and similar areas in the Northeast China Plain, considering the tolerance level of Er (relative error) for the geochemical assessment on land quality. The results obtained by the authors may help optimize soil sampling density in land parcel scale geochemical assessment.

Key wordsland parcel scale    geochemical assessment on land quality    reasonable sampling density    spatial variability    spatial interpolation    Northeast China Plain
收稿日期: 2018-12-06      出版日期: 2019-04-10
ZTFLH:  P595  
  P632  
基金资助:中国地质科学院地球物理地球化学勘查研究所基本科研业务费“地块尺度土地质量地球评价采样密度研究”(AS2012J04);中国地质调查局项目“吉林省公主岭地区多目标地球化学调查”(12120113001400);“西南重金属高背景区1∶25万土地质量地球化学调查”(DD20160313)
作者简介: 彭敏(1984-),男,博士研究生,环境地球化学专业。Email:pm- ant@qq.com
引用本文:   
彭敏, 李括, 刘飞, 唐世琪, 马宏宏, 杨柯, 杨峥, 郭飞, 成杭新. 东北平原区地块尺度土地质量地球化学评价合理采样密度研究[J]. 物探与化探, 2019, 43(2): 338-350.
Min PENG, Kuo LI, Fei LIU, Shi-Qi TANG, Hong-Hong MA, Ke YANG, Zheng YANG, Fei GUO, Hang-Xin CHENG. Reasonable sampling density for land parcel scale geochemical assessment on land quality in Northeast China Plain. Geophysical and Geochemical Exploration, 2019, 43(2): 338-350.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1446      或      http://www.wutanyuhuatan.com/CN/Y2019/V43/I2/338
Fig.1  公主岭市大岭地区地理位置示意
指标 分析方法 检出限 单位
As 氢化物—原子荧光光谱法(HG-AFS) 0.2 10-6
B 发射光谱法(ES) 2 10-6
Cd 等离子体质谱法(ICP-MS) 20 10-9
Cl 压片法X-射线荧光光谱(XRF) 20 10-6
Co 等离子体质谱法(ICP-MS) 1 10-6
Cr 压片法X-射线荧光光谱(XRF) 2 10-6
Cu 等离子体质谱法(ICP-MS) 1 10-6
F 离子选择性电极(ISE) 100 10-6
Ge 氢化物—原子荧光光谱法(HG-AFS) 0.1 10-6
Hg 冷蒸气—原子荧光光谱法(CV-AFS) 2 10-9
I 催化分光光度法(COL) 0.5 10-6
Mn 压片法X-射线荧光光谱(XRF) 10 10-6
Mo 等离子体质谱法(ICP-MS) 0.2 10-6
N 氧化热解 -气相色谱法 20 10-6
Ni 压片法X-射线荧光光谱(XRF) 1 10-6
P 压片法X-射线荧光光谱(XRF) 10 10-6
Pb 等离子体质谱法(ICP-MS) 2 10-6
S 压片法X-射线荧光光谱(XRF) 50 10-6
Se 氢化物—原子荧光光谱法(HG-AFS) 0.01 10-6
Zn 等离子体质谱法(ICP-MS) 2 10-6
SiO2 压片法X-射线荧光光谱(XRF) 0.1 %
Al2O3 压片法X-射线荧光光谱(XRF) 0.1 %
TFe2O3 压片法X-射线荧光光谱(XRF) 0.1 %
MgO 压片法X-射线荧光光谱(XRF) 0.05 %
CaO 压片法X-射线荧光光谱(XRF) 0.05 %
Na2O 压片法X-射线荧光光谱(XRF) 0.05 %
K2O 压片法X-射线荧光光谱(XRF) 0.05 %
Corg 氧化热解—电位法 0.1 %
pH 电位法 0.1 无量纲
  Instrumental methods and detection limit for soil samples
指标 单位 样品数 最小值 最大值 平均值 标准差 变异系数 n
As 10-6 1236 5.63 33.76 11.11 1.84 16.6% 2
B 10-6 1236 13.39 139.78 43.41 7.88 18.1% 2
Cd 10-9 1236 35.81 707.63 175.29 61.93 35.3% 6
Cl 10-6 1236 45.90 1411.80 109.70 97.48 88.9% 34
Co 10-6 1236 7.67 30.87 14.63 3.26 22.3% 3
Cr 10-6 1236 50.80 87.40 64.51 4.47 6.9% 1
Cu 10-6 1236 17.33 59.06 22.66 2.21 9.8% 1
F 10-6 1236 346.89 862.25 476.79 39.82 8.4% 1
Ge 10-6 1236 0.83 1.77 1.32 0.13 9.6% 1
Hg 10-9 1236 3.16 1333.03 45.85 62.65 136.6% 80
I 10-6 1236 0.91 6.05 2.73 0.59 21.5% 2
Mn 10-6 1236 232.61 2393.36 873.10 335.03 38.4% 7
Mo 10-6 1236 0.30 1.92 0.51 0.12 22.5% 3
N 10-6 1236 326.21 3536.15 1717.95 272.24 15.8% 2
Ni 10-6 1236 20.03 55.83 28.91 3.11 10.7% 1
P 10-6 1236 371.42 2180.34 853.03 194.72 22.8% 3
Pb 10-6 1236 20.52 185.26 27.06 5.83 21.5% 2
S 10-6 1236 101.17 1217.25 342.40 102.86 30.0% 4
Se 10-6 1236 0.06 0.51 0.22 0.04 19.0% 2
Zn 10-6 1236 45.74 453.58 63.54 12.40 19.5% 2
SiO2 % 1236 45.81 65.97 62.52 2.02 3.2% 1
Al2O3 % 1236 9.72 16.68 14.39 0.66 4.6% 1
TFe2O3 % 1236 3.26 5.88 4.37 0.29 6.7% 1
MgO % 1236 0.79 1.94 1.32 0.14 10.3% 1
CaO % 1236 0.92 8.78 2.02 1.04 51.7% 12
Na2O % 1236 1.28 3.55 1.91 0.18 9.5% 1
K2O % 1236 1.68 3.12 2.42 0.08 3.5% 1
Corg % 1236 0.24 4.59 1.62 0.29 18.1% 2
pH 无量纲 1236 4.83 9.25 6.96 1.08 15.6% 2
Table 2  公主岭市大岭地区土壤元素含量统计参数及合理取样数
Fig.2  公主岭市大岭地区土壤元素变异系数柱状图
Fig.3  空间插值相对误差(Er)计算方法示意图
a—1236点位数据地球化学图;b—640点位数据地球化学图;c—相对误差图;d—各误差范围内栅格面积比例
Fig.4  4种不同采样密度数据空间插值下的K、Se、Hg预测值与实测值相对误差柱状图

采样
点位
不同Er范围内地块数量比例/%
采样
点位
不同Er范围内地块数量比例/%
≤5% 5%~10% 10%~20% 20%~30% >30% ≤5% 5%~10% 10%~20% 20%~30% >30%
720 75.7 12.8 8.5 2.1 0.8 720 64.8 17.8 12.0 2.7 2.6
N 640 72.2 14.2 9.8 2.3 1.5 P 640 62.9 18.4 12.7 3.1 2.8
480 64.7 17.2 13.7 2.4 2.1 480 53.3 19.6 16.1 6.5 4.6
320 56.0 21.4 16.7 3.3 2.6 320 43.8 22.5 21.0 7.3 5.4
720 97.7 2.0 0.3 0.0 0.1 720 47.3 11.5 14.7 8.2 18.3
K 640 97.5 2.1 0.3 0.0 0.0 Hg 640 40.0 12.2 18.1 10.5 19.2
480 96.6 2.9 0.3 0.1 0.1 480 32.6 11.0 18.9 11.2 26.3
320 95.7 3.7 0.5 0.0 0.1 320 24.9 10.9 20.5 12.8 30.9
720 59.4 16.1 13.0 5.8 5.7 720 83.6 11.6 3.7 0.4 0.6
Cd 640 53.2 17.6 15.0 7.6 6.6 Pb 640 81.9 12.2 4.5 0.6 0.8
480 53.2 17.6 15.0 7.6 6.6 480 76.0 16.2 5.9 1.1 0.8
320 36.4 17.6 22.9 11.0 12.0 320 67.1 17.8 11.8 2.3 0.9
720 72.6 16.7 8.7 1.5 0.6 720 87.9 7.7 3.3 0.9 0.1
As 640 70.7 18.3 8.3 1.8 0.9 Cu 640 87.3 9.0 3.1 0.4 0.2
480 60.9 22.7 13.0 2.1 1.3 480 82.2 12.5 4.0 0.9 0.3
320 56.5 22.3 16.2 3.5 1.5 320 73.8 18.1 6.5 1.4 0.2%
720 85.0 10.2 3.5 1.1 0.2 720 84.0 10.8 4.7 0.5 0.0
Zn 640 85.9 10.1 2.9 0.8 0.3 Ni 640 82.5 10.9 5.7 0.8 0.2
480 78.2 13.8 5.0 1.4 1.5 480 76.7 16.5 5.7 0.8 0.3
320 73.2 18.5 6.2 1.8 0.3 320 72.0 18.3 8.4 0.9 0.3
720 88.7 8.2 2.8 0.3 0.0 720 74.8 14.9 7.6 1.2 1.6
Cr 640 88.1 8.8 2.8 0.3 0.0 Se 640 70.8 15.8 9.3 2.3 1.9
480 84.6 11.9 3.0 0.3 0.2 480 61.4 20.7 12.3 2.9 2.6
320 78.3 16.7 4.4 0.5 0.0 320 56.5 20.3 16.2 4.0 3.0
720 72.2 14.6 8.8 2.7 1.7 720 87.5 8.8 3.2 0.3 0.1
I 640 69.2 14.6 9.9 4.0 2.3 F 640 87.5 8.3 4.0 0.1 0.1
480 61.9 16.9 13.7 5.0 2.5 480 82.1 12.7 4.7 0.3 0.3
320 51.0 23.2 16.5 6.1 3.2 320 75.7 17.1 6.5 0.6 0.2
Table 3  4种不同采样密度数据元素地块预测值与实测值相对误差统计
Fig.5  4种不同采样密度下K、Se、Cd、Hg地块预测值与实测值Er柱状图
Fig.6  4种不同采样密度数据预测等级合格率柱状统计图
评价指标 预测等级合格率/% 评价指标 预测等级合格率/%
720
点位
640
点位
480
点位
320
点位
720
点位
640
点位
480
点位
320
点位
N单指标等级 91.33 89.72 86.07 82.33 Hg单指标等级 99.58 99.83 99.66 99.75
P单指标等级 78.84 77.57 70.69 64.66 Cd单指标等级 99.41 99.15 98.81 98.81
K单指标等级 85.30 85.64 81.90 78.93 Pb单指标等级 100.00 100.00 100.00 100.00
Se单指标等级 97.79 96.94 96.35 95.67 As单指标等级 100.00 100.00 99.92 99.92
I单指标等级 98.98 98.47 98.39 98.30 Cu单指标等级 100.00 100.00 100.00 100.00
F单指标等级 91.59 90.31 87.94 85.39 Zn单指标等级 100.00 100.00 100.00 100.00
养分综合等级 88.19 85.47 82.75 78.84 Ni单指标等级 100.00 99.92 99.92 99.92
环境综合等级 98.98 98.90 98.30 98.47 Cr单指标等级 100.00 100.00 100.00 100.00
质量综合等级 89.63 87.09 84.96 81.90
Table 4  4种不同采样密度数据预测等级合格率统计
Fig.7  640点位数据预测等级与1 236点位数据实测等级对比
[1] 奚小环 . 多目标的地质大调查——21世纪勘查地球化学的战略选择[J]. 物探与化探, 2007,31(4):283-288.
doi: 10.3969/j.issn.1000-8918.2007.04.001
[1] Xi X H . Mutipurpose comprehensive geological survey — The strategic choice of exploration geoshemistry in 21 century[J]. Geophysical & Geochemical Exploration, 2007,31(4):283-288.
[2] 奚小环, 李敏 . 现代地质工作重要发展领域:“十一五”期间勘查地球化学评述[J]. 地学前缘, 2013,20(3):161-169.
[2] Xi X H, Li M . Reviews of the development of the exploration geochemistry during the Eleventh Five-Year Period[J]. Earth Science Frontiers, 2013,20(3):161-169.
[3] 王平, 奚小环 . 全国农业地质工作的蓝图——“农业地质调查规划要点”评述[J].中国地质, 2004(S1):11-15.
doi: 10.3969/j.issn.1000-3657.2004.z1.004
[3] Wang P, Xi X H . Blueprint of nationwide agrogeological environmental survey—On the “Main Points of the Plan of Nationwide Agrogeological Environmental Survey”[J]. Geology in China, 2004(S1):11-15.
[4] 黄勇, 杨忠芳 . 中国土地质量评价的研究现状及展望[J]. 地质通报, 2008,27(2):207-211.
doi: 10.3969/j.issn.1671-2552.2008.02.007
[4] Huang Y, Yang Z F . Land quality evaluation in China: present status and prospect[J]. Geological Bulletin of China, 2008,27(2):207-211.
[5] 刘耀林, 焦利民 . 土地评价理论、方法与系统开发[M]. 北京: 科学出版社, 2008: 101-102.
[5] Liu Y L, Jiao L M . Theory, method and system development of land evaluation[M]. Beijing: Science publishing house, 2008: 101-102.
[6] 张晓萍, 焦锋, 李锐 . 地块尺度土地可持续利用评价指标与方法探讨——以陕北安塞纸坊沟为例[J]. 环境科学进展, 1999,7(5):29-33.
[6] Zhang X P, Jiao F, Li R . The indices and method approach of land sustainable use evaluation in land patch scale—Take the Zhifang gully in Ansai, Shaanxi province as example[J]. Advances in Environmental Science, 1998,7(5):29-33.
[7] 许树辉 . 地块尺度耕地质量评价与方法探讨——以湖南省浏阳市为例[J]. 长江流域资源与环境, 2004,13(1):47-52.
doi: 10.3969/j.issn.1004-8227.2004.01.009
[7] Xu S H . Indicators and method of arable land quality evaluation at the patch scale—A case study of Liyang, Hunan province[J]. Resources and Environment in the Yangtze Basin, 2004,13(1):47-52.
[8] 张仁铎 . 空间变异理论及应用[M]. 北京: 科学出版社, 2005: 5-6.
[8] Zhang R D . Theory of spatial variation and its application[M]. Beijing: Science publishing house, 2005: 5-6.
[9] 王秀, 苗孝可, 孟志军 , 等. 插值方法对GIS土壤养分插值结果的影响[J]. 土壤通报, 2005,36(6):826-830.
doi: 10.3321/j.issn:0564-3945.2005.06.003
[9] Wang X, Miao X K, Meng Z J , et al. Effect on soil nutrition interpolation result of different interpolation styles[J]. Chinese Journal of Soil Science, 2005,36(6):826-830.
[10] 朱会义, 刘述林, 贾绍凤 . 自然地理要素空间插值的几个问题[J].地理研究, 2004(04):425-432.
doi: 10.3321/j.issn:1000-0585.2004.04.001
[10] Zhu H Y, Liu S L, Jia S F . Natural geographical elements of spatial interpolation problems[J]. Acta Geographica Sinica, 2004(4):425-432.
[11] Long J, Liu Y L, Xing S H , et al. Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography[J]. Ecological Indicators, 2018,93:562-571.
doi: 10.1016/j.ecolind.2018.05.044
[12] Bogunovic I, Mesic M, Zgorelec Z , et al. Spatial variation of soil nutrients on sandy-loam soil[J]. Soil and Tillage Research, 2014,144:174-183.
doi: 10.1016/j.still.2014.07.020
[13] Bhunia G S, Shit P K, Maiti R . Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC)[J]. Journal of the Saudi Society of Agricultural Sciences, 2018,17(2):114-126.
doi: 10.1016/j.jssas.2016.02.001
[14] 苏晓燕, 赵永存, 杨浩 , 等. 不同采样点数量下土壤有机质含量空间预测方法对比[J]. 地学前缘, 2011,18(6):34-40.
[14] Su X Y, Zhao Y C, Yang H , et al. A comparison of predictive methods for mapping the spatial distribution of soil organic matter content with different sampling densities[J]. Earth Science Frontiers, 2011,18(6):34-40.
[15] Zhang, Z Q, Yu, D S , Shi X Z.Priority selection rating of sampling density and interpolation method for detecting the spatial variability of soil organic carbon in China[J]. Environmental Earth Sciences, 2015,5(73):2287-2297.
doi: 10.1007/s12665-014-3580-3
[16] 范曼曼, 吴鹏豹, 张欢 , 等. 采样密度对土壤有机质空间变异解析的影响[J]. 农业现代化研究, 2016,37(3):594-600.
doi: 10.13872/j.1000-0275.2016.0045
[16] Fan M M, Wu P B, Zhang H , et al. Effect of sampling density on spatial variability analysis of soil organic matter[J]. Research of Agricultural Modernization, 2016,37(3):594-600.
[17] 张圣民, 许明祥, 张志霞 , 等. 黄土高原不同地貌类型区农田土壤有机碳采样布点方法研究[J]. 自然资源学报, 2018,33(4):634-643.
doi: 10.11849/zrzyxb.20170477
[17] Zhang S M, Xu M X, Zhang Z X , et al. Methods of sampling soil 0rganic carbon in farmlands with different landform types on the loess plateau[J]. Journal of Natural Resources, 2018,33(4):634-643.
[18] 赵倩倩, 赵庚星, 姜怀龙 , 等. 县域土壤养分空间变异特征及合理采样数研究[J]. 自然资源学报, 2012,27(8):1382-1391.
doi: 10.11849/zrzyxb.2012.08.012
[18] Zhao Q Q, Zhao G X, Jiang H L , et al. Study on spatial variability of soil nutrients and reasonable sampling number at county scale[J]. Journal of Natural Resources, 2012,27(8):1382-1391.
[19] 陈光, 贺立源, 詹向雯 . 耕地养分空间插值技术与合理采样密度的比较研究[J]. 土壤通报, 2008,39(5):1007-1011.
doi: 10.3321/j.issn:0564-3945.2008.05.008
[19] Chen G, He L Y, Zhan X W . Comparison of spatial interpolation technique of soil nutrient and reasonable sampling density[J]. Chinese Journal of Soil Science, 2008,39(5):1007-1011.
[20] 张志霞, 许明祥, 刘京 , 等. 黄土高原不同地貌区土壤有机碳空间变异与合理取样数研究[J]. 自然资源学报, 2014,29(12):2103-2113.
doi: 10.11849/zrzyxb.2014.12.011
[20] Zhang Z X, Xu M X, Liu J , et al. Spatial variation and reasonable sampling number of soil organic carbon under different geomorphic types on the Loess Plateau[J]. Journal of Natural Resources, 2014,29(12):2103-2113.
[21] 齐雁冰, 常庆瑞, 刘梦云 , 等. 县域农田土壤养分空间变异及合理样点数确定[J]. 土壤通报, 2014,45(3):556-561.
[21] QI Y B, Chang Q R , Liu M Y et al. County-scale spatial variability of soil nutrient distribution and determination of reasonable sampling density[J]. Chinese Journal of Soil Science, 2014,45(3):556-561.
[22] 阎波杰, 潘瑜春, 赵春江 . 区域土壤重金属空间变异及合理采样数确定[J]. 农业工程学报, 2008,24(S2):260-264.
[22] Yan B J, Pan Y C, Zhao C J . Spatial variability and reasonable sampling number of regional soil heavy metals[J]. Transactions of the CSAE, 2008,24(S2):260-264.
[23] 李凯, 赵华甫, 吴克宁 , 等. 土壤重金属Cd污染指数的适宜插值方法和合理采样数量研究[J]. 土壤通报, 2016,47(05):1056-1064.
doi: 10.19336/j.cnki.trtb.2016.05.06
[23] Li K, Zhao H F, Wu K N , et al. Suitable interpolation method and reasonable sampling quantity of Cd pollution index in soil[J]. Chinese Journal of Soil Science, 2016,47(5):1056-1064.
[24] 王大鹏, 于成广, 宋淑娥 , 等. 基于ArcGIS的表层土壤元素空间插值与地球化学分级分析[J]. 土壤通报, 2015,46(6):1307-1313.
[24] Wang D P, Yu C G, Song S E , et al. The comparative analysis of surface soil elements and its geochemical grade use interpolation and measured data based on ArcGIS[J]. Chinese Journal of Soil Science, 2015,46(6):1307-1313.
[25] 贺灵, 孙彬彬, 周国华 , 等. 浙中丘陵盆地区1∶5万土地质量地球化学调查方法研究[J]. 现代地质, 2016,30(6):1285-1293.
doi: 10.3969/j.issn.1000-8527.2016.06.010
[25] He L, Sun B B, Zhou G H , et al. Research of 1∶50,000 land quality geochemical survey technique at a hilly-basin area in Zhejiang Province[J]. Geoscience, 2016,30(6):1285-1293.
[26] DZT 0295-2016 .土地质量地球化学评价规范[S].中华人民共和国国土资源部, 北京:地质出版社, 2016.
[26] DZT 0295-2016 Specification of land quality geochemical assessment[S] Ministry of Land and Resources of the People’s Republic of China, Beijing: Geological Publishing House, 2016.
[27] DZT 0258-2014 多目标区域地球化学调查规范(1∶250 000)[S].中华人民共和国国土资源部, 北京:中国标准出版社, 2014.
[27] DZT 0258-2014 Specification of multi-purpose regional geochemical survey(1∶250 000)[S]Ministry of Land and Resources of the People’s Republic of China, Beijing: China Standard Press, 2014.
[28] DD2005-05 生态地球化学评价样品分析技术要求(试行)[S]. 中国地质调查局, 2005.
[28] DD2005-05 Specification of analytical method for ecogeochemistry assessment samples (a trial version)[S]. China Geological Survey, 2005.
[29] 黄绍文, 金继运 . 土壤特性空间变异研究进展[J].土壤肥料, 2002(1):8-14.
doi: 10.11838/sfsc.20020102
[29] Huang S W, Jin J Y . Advance in study on spatial variability of soil properties[J]. Soils and Fertilizers, 2002(1):8-14.
[30] 徐冰, 陈亚新, 郭克贞 . 小尺度草地土壤植被空间变异性研究[J].水土保持研究, 2007(6):174-176.
[30] Xu B, Chen Y X, Guo K Z . Spatial variability of soil and vegetation on a little scale in desert grassland[J]. Research of Soil and Water Conservation, 2007(6):174-176.
[31] 薛正平, 杨星卫, 段项锁 , 等. 土壤养分空间变异及合理取样数研究[J]. 农业工程学报, 2002,28(4):6-9.
doi: 10.3321/j.issn:1002-6819.2002.04.002
[31] Xue Z P, Yang X W, Duan X S , et al. Spatial variability of soil nutrient and reasonable sampling number[J]. Transactions of the CSAE, 2002,18(4):6-9.
[32] Cochran W G . Sampling Techniques (Third Edition ed)[M]. New York: John Wiley and Sons, 1977: 72-85.
[33] 袁峰, 白晓宇, 周涛发 , 等. 元素空间分布插值方法的对比研究:以铜陵地区土壤中的重金属元素为例[J]. 地学前缘, 2008,15(5):103-109.
doi: 10.3321/j.issn:1005-2321.2008.05.012
[33] Yuan F, Bai X Y, Zhou T F , et al. Comparison between methods for interpolation of studying spatial distribution of elements: a case study of soil heavy metals in Tongling area, south China[J]. Earth Science Frontiers, 2008,15(5):103-109.
[1] 肖高强, 宗庆霞, 向龙洲, 刀艳, 徐永强. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2): 412-418.
[2] 翁望飞, 王德恩, 王邦民, 丁勇, 王拥军. 安徽省祁门—黟县地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2020, 44(1): 1-12.
[3] 席明杰, 朱立新, 马生明, 胡树起, 刘崇民, 王惠艳. 内蒙古拜仁达坝西矿区锌多金属矿床原生地球化学异常模式[J]. 物探与化探, 2014, 38(2): 239-247.
[4] 廖启林, 吴新民, 金洋. 南京—镇江地区多目标地球化学调查初步成果[J]. 物探与化探, 2004, 28(3): 257-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com