Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 932-947    DOI: 10.11720/wtyht.2019.1436
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
玻利维亚盆山原镶嵌构造区特殊景观区沟系次生晕—遥感—构造岩相学综合评价技术组合研发与应用效果
杜玉龙1,2, 方维萱3()
1. 昆明理工大学 国土资源工程学院,云南 昆明 650224
2. 中色地科矿产勘查股份有限公司,北京 100012
3. 有色金属矿产地质调查中心,北京 100012
Research,development and application effect of comprehensive evaluation technique of valley system secondary halo-remote sensing-tectonic lithofacies in basin-orogen-plateau inlaid structure and special landscape zone, Bolivia
Yu-Long DU1,2, Wei-Xuan FANG3()
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650224, China
2. Sinotech Minerals Exploration Co., Ltd.,Beijing 100012, China
3. China Non-ferrous Metals Resource Geological Survey, Beijing 100012, China
全文: PDF(6675 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在玻利维亚Tupiza、Cuprita盆山原镶嵌构造区特殊景观区,开展沟系次生晕测量—遥感—构造岩相学解译填图的综合方法试验研究和推广应用,结果显示:①遥感—构造岩相学解译填图单元,作为构造岩相学填图单位和沟系次生晕测量的工作底图,能快速识别工作区地形地物、地质和景观特征等,提高采样和综合地质填图的有效点率。②沟系次生晕采样层位以B层为主,采样粗加工粒度以-10~+60目效果最佳。③方法技术应用效果良好,显示该技术方法在安第斯盆山原镶嵌构造区特殊景观下为一种经济、高效、快速的综合评价技术方法组合,为中资企业境外投资风险控制提供有效勘查途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜玉龙
方维萱
关键词 沟系次生晕遥感—构造岩相学解译(填图)盆山原镶嵌构造玻利维亚高原特殊景观区    
Abstract

In this paper, the authors carried out tentative research and promotion application, which constitute an integrated approach to valley system secondary halo-remote sensing-tectonic lithofacies interpretation in basin-orogen-plateau inlaid structure and special landscape zone of the Tupiza and Cuprita copper deposits, Bolivia. Key points of combinational method and application effect are as follows: ① The key is interpreting mapping unit by remote sensing-tectonic lithofacies, which serves as base map of valley systems secondary halo and tectonic lithofacies mapping unit. Remote sensing-tectonic lithofacies interpreting can identify topography and landscape cell rapidly, and improve effective point ratio of geologic mapping and sampling of valley systems secondary halo. ② Sampling horizon and sampling depth were determined tentatively. It is known that the main sampling horizon is B soil and the best sampling size fraction is -10~+60 mesh grain size. ③ The technical method has achieved good results in application and promotion in the Tupiza and Cuprita copper deposits, which proves that the combination of technical methods is an economic, efficient and rapid comprehensive evaluation technique in basin-orogen-plateau inlaid structure and special landscape area of Andes. It also provides an effective exploration route of overseas investment, so as to control risk for Chinese-funded enterprises.

Key wordssecondary halo of valley systems    remote sensing-tectonic lithofacies interpretation (mapping)    basin-orogen-plateau inlaid structure    plateau special landscape area    Bolivia
收稿日期: 2018-11-23      出版日期: 2019-10-25
:  P632  
基金资助:国土资源部行业性科研基金项目(201511016-1);科技部转制科研院所技术开发研究专项(2014EG115019);云南省矿产资源评价工程实验室(2010);云南省地质过程与矿产资源创新团队(2012);中战会(北京)矿业科技有限公司玻利维亚勘查项目联合资助
通讯作者: 方维萱
作者简介: 杜玉龙(1984-),男,高级工程师,主要从事境外矿产勘查工作。Email: sunnyman0511@163.com
引用本文:   
杜玉龙, 方维萱. 玻利维亚盆山原镶嵌构造区特殊景观区沟系次生晕—遥感—构造岩相学综合评价技术组合研发与应用效果[J]. 物探与化探, 2019, 43(5): 932-947.
Yu-Long DU, Wei-Xuan FANG. Research,development and application effect of comprehensive evaluation technique of valley system secondary halo-remote sensing-tectonic lithofacies in basin-orogen-plateau inlaid structure and special landscape zone, Bolivia. Geophysical and Geochemical Exploration, 2019, 43(5): 932-947.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1436      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/932
Fig.1  玻利维亚构造单元与试验研究区、推广应用区位置
1—西科迪勒拉山脉,平均海拔>4 500 m,现代安第斯主岩浆弧标志;2—Altiplano高原,平均海拔约4 000 m,由一系列山间盆地相连组成,为锡多金属成矿带;3—东科迪勒拉,为金锑、铅锌成矿带;4—次安第斯带(逆冲断褶带);5—克拉通平原(①—马德雷得蒂奥斯(Madre de díos)平原,②—贝尼(Beni)平原,③—查克(Chaco)平原);6—研究区(Tu为南部Tupiza铜矿试验研究及同步应用矿区,Cup为北部Cuprita铜矿推广应用区);7—省会城市;8—其他城市;9—高原盐湖(SC为Coipasa盐湖;SU为Uyuni盐湖);10—高原湖泊(LT为迪迪卡卡湖;LPO为波波湖)
Fig.2  试验区特殊景观及典型土壤剖面
a—真彩色遥感-构造岩相学解译与填图单元,作为沟系次生晕测量和构造岩相学填图工作底图;b—Cuprita地貌景观;c—近水平产出的膏岩层(石膏);d—火山岩(含铜矿化)基岩区典型土壤剖面;e—砂岩基岩区典型土壤剖面,砂岩发生强烈褪色化蚀变,裂隙中见有氯铜矿化;f—冲沟揭露的紫红色粉砂岩基岩区典型土壤剖面;g—灰白色钙积层(白垩土层)与浅灰绿色、浅紫红色砂岩、粉砂岩互层产出;h—风化壳;i—盐晕
样号 深度/粒级 Au Ag Sn As Hg Cu Pb Zn Sb Bi Co Ni W Mo
SS4-1 0~10 cm 0.78 0.13 2.38 28.9 25.8 282 128 241 0.95 0.11 35.3 50.8 1.06 1.38
SS4-2 10~20 cm 0.91 0.17 2.18 65.1 19.2 553 451 358 0.86 0.11 41.0 55.2 1.08 1.49
SS4-3 20~30 cm 0.75 0.17 2.45 100 21.6 870 702 537 0.80 0.11 43.2 55.7 1.12 1.65
SS4-4 30~40 cm 1.49 0.29 2.16 294 23.7 2154 769 1429 0.94 0.14 65.1 64.1 1.17 4.02
SS4-5 40~50 cm 1.43 0.42 2.06 436 39.8 3312 3623 2855 0.99 0.16 99.0 71.6 1.15 3.78
LS6-1 -10~+20目 0.86 0.40 2.35 303 58.0 2118 2203 1579 0.87 0.13 64.4 63.9 1.10 3.06
LS6-2 -10~+40目 0.83 0.33 2.15 447 26.2 2749 2978 1720 0.89 0.15 79.7 64.7 1.07 6.30
LS6-3 -10~+60目 1.42 0.42 2.57 493 49.6 3045 3347 1804 0.99 0.16 78.0 65.3 1.11 3.73
LS6-4 -40目 2.72 0.18 2.03 203 82.5 1472 1755 966 1.01 0.14 45.5 44.3 0.90 2.27
LS6-5 -60目 2.84 0.16 2.27 114 61.5 1299 1454 934 1.08 0.15 30.8 39.9 0.82 1.53
Table 1  Tupiza试验区沟系次生晕采样粒级及深度试验结果
矿区 异常编号 面积/km2 ∑NAP 异常表达式 排序
T-6 0.5843 1.9628 Cu0.9582-Co0.3421-Ni0.2648-Zn0.1285-Pb0.0972-Ag0.065-Sb0.0312 5
Tupiza T-8 0.3637 1.2496 Co0.2586-Ni0.2337-Pb0.2002-Zn0.1921-Cu0.1506-Ag0.0418-Sb0.0405 9
T-17 1.3494 1.2214 As0.3474-Au0.3452-Ag0.1351-Pb0.1268-Hg0.1176-Sb0.0638-Cu0.0279 10
C-4 1.687 43.608 Pb32.6971-Cu2.8506-Ag2.6543-Sb2.17-As1.5618-Zn0.7472-Mo0.3438 1
Cuprita C-5 0.9306 5.2920 Pb1.882-Cu1.4026-Ag1.2199-Co0.2745-Sb0.2078-As0.0654-Ni0.0603 3
C-6 1.3389 6.6474 Cu4.0119-Ag1.3609-Pb0.8357-Nb0.3067-Hg0.0553-Sb0.0197-Mo0.0143 2
Table 2  甲类综合异常特征
Fig.3  Tupiza铜矿区Cu、Pb、Zn异常剖析
1—综合异常;2—Cu异常等值线(×10-6);3—逆冲断层;4—铜矿化体;5—刻槽取样点;6—预测靶区;7—Ta异常等值线(×10-6);8—Nb异常等值线(×10-6)
Fig.4  Cuprita铜矿区Cu、Ag、Pb异常剖析
1—未固结的崩积、冲积物;2—火山质砂砾岩、砂岩、未焊接的流纹质凝灰岩、粉砂岩;3—橄榄辉长岩;4—斜长斑岩;5—安山质火山角砾、火山集块岩;6—气孔状安山岩、玄武质粗安岩;7—含铜沉积砾岩(底砾岩);8—沉凝灰岩,粗粒薄 -厚层状凝灰质砂岩和原地砾岩;9—长石砂岩、长石石英砂岩;10—推测火山机构;11—实测及推测断层;12—地质界线;13—地表验证的铜矿化体(采用了夸大表示);14—预测靶区;15—综合异常及编号
Fig.5  玻利维亚Tupiza试验区异常深部钻探验证0号剖面
1—辉绿岩-辉长岩岩脉,次火山侵入相;2—上白垩统阿诺依菲雅组第三岩性段第二岩相层,火山溢流相;3—上白垩统阿诺依菲雅组第三岩性段第一岩性层,火山碎屑岩相;4—上白垩统阿诺依菲雅组第二岩性段:5—铜(银)矿(化)体;6—逆冲断层和断裂带及斜冲走滑方向;7—钻孔位置及编号;8—铜矿体品位(%)及厚度(m);9—伴生银品位(10-6);10—推测、实测地层界线;11—预测铜(钴)矿体
[1] 方维萱, 徐国端 . 勘查地球化学主要新进展与今后的重要发展领域[J]. 矿产与地质, 2005,19(6):599-605.
[1] Fang W X, Xu G D . Latest major progresses and key orientations exploration geochemistry[J]. Mineral Resources and Geology, 2005,19(6):599-605.
[2] 方维萱, 郭玉乾 . 基于风险分析的商业性找矿预测新方法与应用[J]. 地学前缘, 2009,16(2):209-226.
[2] Fang W X, Guo Y Q . New ore prospecting methodologies based on risk analysis in commercial assessments and their applications[J]. Earth Science Frontiers, 2009,16(2):209-226.
[3] 王学求, 张必敏, 刘雪敏 . 纳米地球化学:穿透覆盖层的地球化学勘查[J]. 地学前缘, 2012,19(3):101-112.
[3] Wang X Q, Zhang B M, Liu X M . Nanogeochemistry: Deep-penetrating geochemical exploration through cover[J]. Earth Science Frontiers, 2012,19(3):101-112.
[4] 王学求, 张必敏, 姚文生 , 等. 地球化学探测:从纳米到全球[J]. 地学前缘, 2014,21(1):65-74.
[4] Wang X Q, Zhang B M, Yao W S , et al. Geochemical exploration: From nanoscale to global-scale patterns[J]. Earth Science Frontiers, 2014,21(1):65-74.
[5] 王学求 . 全球地球化学基准:了解过去,预测未来[J]. 地学前缘, 2012,19(3):7-18.
[5] Wang X Q . Understanding the past and predicting the future[J]. Earth Science Frontiers, 2012,19(3):7-18.
[6] 王学求, 徐善法, 程志中 , 等. 国际地球化学填图新进展[J]. 地质学报, 2006,80(10):1598-1606.
[6] Wang X Q, Xu S F, Cheng Z Z , et al. Progress on international geochemical mapping[J].Acta Geologica Sinica, 2006, 80(10):1598-1606.
[7] Brooks R R . Geobotany and Biogeochemistry in Mineral Exploration[M]. New York: Harper & Row, 1972.
[8] 罗先熔 . 再论地球电化学测量法寻找隐伏矿床[J]. 桂林冶金地质学院学报, 1994,14(3):295-302.
[8] Luo X R . Secondary discussion on prospecting buried ore by geoelectrochemical method[J]. Journal of Guilin College of Geology, 1994,14(3):295-302.
[9] 罗先熔, 段冶 . 我国地电提取测量法的应用现状及研究方向[J]. 桂林工学院学报, 1995,15(1):34-39.
[9] Luo X R, Duan Z . The present situation of application of the geoelectrochemical exploration method in China and its research direction[J]. Journal of Guilin Institute of Technology, 1995,15(1):34-39.
[10] Mclnnes Brent I A, Dunn Colin E, Cameron Eion E , et al. Biogeochemical exploration for gold in tropical rain forest regions of Papua New Guinea[J]. Journal of Geochemical Exploration, 1996,57:227-243.
[11] 罗先熔, 胡云沪 . 云南宋家坡斑岩铜矿地电化学异常特征及机制[J]. 桂林工学院学报, 1998,18(3):42-47.
[11] Luo X R, Hu Y H . The geoelectrochemical anomaly feature and mechanism of porphyry copper deposit in Songjiapo, Yunnan[J]. Journal of Guilin Institute of Technology, 1998,18(3):42-47.
[12] 罗先熔, 周涛发 . 吉林红旗岭铜镍矿床地电化学异常特征、成晕机制及找矿预测[J]. 吉林大学学报:地球科学版, 2004,34(2):304-308.
[12] Luo X R, Zhou T F . Feature and forming mechanism of geo-electrochemical anomalyof the Hongqiling copper-nickel deposit and its prediction, Jilin Province[J]. Journal of Jinlin University:Earth Science Edition, 2004,34(2):304-308.
[13] Reeves R D, Baker A J M, Romero R . The ultramafic flora of the Santa Elena Peninsula, Costa Rica: A biogeochemical reconnaissance[J]. Journal of Geochemical Exploration, 2007,93(3):153-159.
[14] 张学洪, 杨文婷, 魏彩春 , 等. 重金属超富集植物根际微生态研究进展[J]. 桂林工学院学报, 2008,28(4):548-553.
[14] Zhang X H, Yang W T, Wei C C , et al. Development of rhizosphere microecology in heavy meatal hyper accumulators[J]. Journal of Guilin University of Technology, 2008,28(4):548-553.
[15] Reid Nathan, Hill Steven M, Lewis David M . Spinifex biogeochemical expressions of buried gold mineralization: The great mineral exploration penetrator of transported regolith[J]. Applied Geochemistry, 2008,23(1):76-84.
[16] 宋慈安, 雷良奇 . 我国勘查植物地球化学的研究现状及发展方向[J]. 桂林工学院学报, 2009,29(1):1-11.
[16] Song C A, Lei L Q . Research and orientation of exploration vegetation geochemistry in China[J]. Journal of Guilin University of Technology, 2009,29(1):1-11.
[17] 宋慈安, 杨仲平, 雷良奇 , 等. 西双版纳南坡铜矿区植物地球化学特征及找矿有效指示植物[J]. 桂林理工大学学报, 2010,30(1):1-14.
[17] Song C A, Yang Z P, Lei L Q , et al. Characteristics of phytogeochemistry and prospecting effective indicator plant in Xishuangbanna Nanpo copper deposit[J]. Journal of Guilin University of Technology, 2010,30(1):1-14.
[18] 宋慈安, 宋玮, 雷良奇 , 等. 干旱荒漠区勘查植物地球化学研究现状及关键科学问题[J]. 桂林理工大学学报, 2014,34(4):595-605.
[18] Song C A, Song W, Lei L Q , et al. Current research and critical scientific issues of explorationvegetation geochemistry in arid desert area[J]. Journal of Guilin University of Technology, 2014,34(4):595-605.
[19] 陈杨, 宋慈安, 杨仲平 . 西双版纳南坡铜矿区土壤中元素的赋存形态及植物的有效性[J]. 桂林理工大学学报, 2011,31(4):516-523.
[19] Chen Y, Song C A, Yang Z P . Occurrence and bioavailability of elements from the soil of Nanpo Copper Area in Xishuangbanna[J]. Journal of Guilin University of Technology, 2011,31(4):516-523.
[20] 宋玮, 雷良奇, 宋慈安 , 等. 新疆喀拉通克铜镍矿区植物地球化学特征及找矿有效植物和元素的选择[J]. 桂林理工大学学报, 2016,36(2):195-206.
[20] Song W, Lei L Q, Song C A , et al. Characteristics of phytogeochemistry and prospecting choices of effective plants and elements in Kalatongke Cu-Ni ore field,Xinjiang[J]. Journal of Guilin University of Technology, 2016,36(2):195-206.
[21] 刘攀峰, 罗先熔, 文美兰 , 等. 近三十年来我国地电化学技术研究回顾与展望[J]. 桂林理工大学学报, 2018,38(1):47-55.
[21] Liu P F, Luo X R, Wen M L , et al. Retrospect and prospect for geo-electrochemical technology research in the past three decades of China[J]. Journal of Guilin University of Technology, 2018,38(1):47-55.
[22] 王学求 . 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013,32(2):190-197.
[22] Wang X Q . A decade of exploration geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013,32(2):190-197.
[23] 王学求 . 勘查地球化学80年来重大事件回顾[J]. 中国地质, 2013,40(1):322-330.
[23] Wang X Q . Landmark events of exploration geochemistry in the past 80 years[J]. Geology in China, 2013,40(1):322-330.
[24] Brooks R R . Biological methods of prospecting for gold[J]. Journal of Geochemical Exploration, 1982,1(7):109-122.
[25] 罗先熔 . 多种新方法寻找隐伏矿的研究及效果[J]. 地质与勘探, 1995,31(1):44-49.
[25] Luo X R . A few new methods to find out concealed deposit and their effect[J]. Geology and Exploration, 1995,31(1):44-49.
[26] 罗先熔, 张学洪, 张力 . 应用多种化探新方法寻找隐伏锑矿——以云南木利锑矿为例[J]. 桂林工学院学报, 1997,17(1):42-48.
[26] Luo X R, Zhang X H, Zhang L . The application of the various new methods in search for hidden stibium ore deposits: An example from Muli stibium mining area, Yunnan[J]. Journal of Guilin Institute of Technology, 1997,17(1):42-48.
[27] 罗先熔, 陈三明, 杜建波 , 等. 地球电化学勘查法寻找不同埋深隐伏金矿的研究[J]. 矿物岩石, 2002,22(4):42-46.
[27] Luo X R, Chen S M, Du J B , et al. Study of geoelectro-chemical method in search for different hidden deposit[J]. Journal of Mineralogy and Petrology, 2002,22(4):42-46.
[28] Dunn C E, Angélicaa R S . Evaluation of biogeochemistry as a tool in mineral exploration and in monitoring environmental mercury dispersion in the Tapljos gold district, Amazania Brazil[R]. Geological Survery of Canada. Ottawa: Natural Resources Canada Library, 2000.
[29] 王学求, 张必敏, 姚文生 , 等. 覆盖区勘查地球化学理论研究进展与案例[J]. 地球科学:中国地质大学学报, 2012,37(6):1126-1132.
[29] Wang X Q, Zhang B M, Yao W S , et al. New evidences for transport mechanism and case histories of geochemical exploration through covers[J]. Earth Science—Journal of China University of Geosciences, 2012,37(6):1126-1132.
[30] 王学求, 迟清华 . 荒漠戈壁区地球化学调查方法取得重大进展[J]. 矿床地质, 2002,21(2):158-158.
[30] Wang X Q, Chi Q H . Significant progress from geochemical survey in desert and Gobi[J]. Mineral Deposits, 2002,21(2):158-158.
[31] 周军, 陈明勇, 高鹏 , 等. 新疆东准格尔蚀变矿物填图及多元信息找矿[J]. 国土资源遥感, 2005,17(4):51-55.
doi: 10.6046/gtzyyg.2005.04.12
[31] Zhou J, Chen M Y, Gao P , et al. Alteration mineral mapping and multi-information ore prospecting in eastern Junggar, Xinjiang[J]. Remote Sensing for Land and Resources, 2005,17(4):51-55.
[32] 刘磊, 施明, 周军 , 等. 遥感、化探、地质信息综合在昌宁矿产勘查中的应用[J]. 地球科学与环境学报, 2007,29(4):383-386.
[32] Liu L, Shi M, Zhou J , et al. Synthetic analyses of remote sensing, geochemical surveying data and geology in ore exploration in Changning[J]. Journal of Earth Sciences and Environment, 2007,29(4):383-386.
[33] 刘磊, 冯成贵, 杨丰柱 , 等. 新疆阿热勒托别地区遥感化探综合找矿研究[J]. 现代地质, 2009,23(3):564-568.
[33] Liu L, Feng C G, Yang F Z , et al. Synthetic analyses of remote sensing and geochemical surveying data in the ore exploration in Areletuobie, Xinjiang[J]. Geoscience, 2009,23(3):564-568.
[34] 张文秦, 汪彩芳, 刘成东 , 等. 依据化探成果对东昆仑地质背景的讨论[J]. 现代地质, 2002,16(3):257-262.
[34] Zhang W Q, Wang C F, Liu C D , et al. A discussion on geological background of the east Kunlun area by geochemical exploration data[J]. Geoscience, 2002,16(3):257-262.
[35] 玉苏普艾力·喀迪尔, 陈川, 刘雷 . 新疆博格达东段多金属矿带化探原生晕与激电测量相结合的找矿效果[J]. 现代地质, 2015,29(3):713-720.
[35] Yusupu A K, Chen C, Liu L . Prospecting effect on geochemical primary halos of polymetallic ore belt in eastern Bogda,Xinjiang combined with induced polarization survey[J]. Geoscience, 2015,29(3):713-720.
[36] 吕国安, 刘权清 . 快速评价分散流异常的沟系原、次生晕方法[J]. 地质与勘探, 1987,23(9):53-58.
[36] Lyu G A, Liu Q Q . The ravine system primary-second halo method for fast evaluation of dispersion train anomalies[J]. Geology and Prospecting, 1987,23(9):53-58.
[37] 吕国安 . 成矿区( 带)异常评价选择的基本条件研究[J]. 有色金属矿产与勘查, 1999,8(6):363-367.
[37] Lyu G A . Prerequisite for choice of anomalies in metallogenic belts[J]. Geological exploration for non-ferrous metals, 1999,8(6):363-367.
[38] 吕国安 . 成矿区带地球化学异常评价方法[M]. 北京: 冶金工业出版社, 2002.
[38] Lyu G A. Evaluation method of geochemical anomalies in metallogenic belts[M]. Beijing: Metallurgical Industry Press, 2002.
[39] 张振邦 . 沟系次生晕测量在国土资源大调查中的应用效果[J]. 矿产与地质, 2003,17(增刊):479-481.
[39] Zhang Z B . Application result of the valleys heterochronogenous soil geochemical prospecting in national earth resources survey[J]. Mineral resources and geology, 2003,17(S):479-481.
[40] 刘增铁 . 北祁连地区金矿次生晕测量方法及找矿效果初探[J]. 地质与勘探, 1993,29(6):49-53.
[40] Liu Z T . Methods and effectiveness of secondary halo survey over Au-deposit in northern Qilian area, Qinghai province[J]. Geology and Prospecting, 1993,29(6):49-53.
[41] 胡宝群 . 安家营子金矿土壤地球化学的试验研究[J]. 矿产与地质, 1998,12(1):55-60.
[41] Hu B Q . Exploration study of gold by soil geochemistry in the An Jiayingzi gold deposit[J]. Mineral resources and geology, 1998,12(1):55-60.
[42] 夏广清 . 内蒙古东乌旗哈巴特盖银多金属矿土壤地球化学异常特征[J].地质找矿论丛, 2006(S1):144-148.
[42] Xia G Q . Soil geochemical anomaly characteristics of Habategai silver polymetallic ore deposit, east Ujimqin county, inner Mongolia[J]. Contributions to Geology and Mineral Resources Research, 2006(S1):144-148.
[43] 彭头平, 彭冰霞, 李晓勇 , 等. 土壤地球化学找矿试验性研究[J]. 大地构造与成矿学, 2002,26(4):442-447.
[43] Peng T P, Peng B X, Li X Y , et al. A tentative study on soil geochemical for prospecting[J]. Geotectonica et Metallogenia, 2002,26(4):442-447.
[44] 张国义, 张连发 . 土壤地球化学测量在山东蓬莱地区普查找金的效果[J]. 地质找矿论丛, 2003,18(S1):141-145.
[44] Zhang G Y, Zhang L F . The effect of soil geochemistry survey on prospect in Penglai county, Shandong province[J]. Contributions to Geology and Mineral Resources Research, 2003,18(S1):141-145.
[45] 高珍权, 方维萱, 王伟 , 等. 沟系土壤测量在新疆乌恰县萨热克铜矿勘查中的应用效果[J]. 矿产与地质, 2005,19(6):669-673.
[45] Gao Z Q, Fang W X, Wang W , et al. Application effect of drainage soil survey in Sareke copper deposit prospecting[J]. Mineral resources and geology, 2005,19(6):669-673.
[46] 罗正传 . 沟系次生晕测量在青海东昆仑造山带沟里地区的应用效果[J]. 矿产与地质, 2005,19(6):679-682.
[46] Luo Z Z . Application effect of secondary halo measurement of drainage system in Gouli area of east Kunlun orogenic belt,Qinghai[J]. Mineral resources and geology, 2005,19(6):679-682.
[47] 吕军, 王建民, 王洪波 , 等. 土壤地球化学测量在三道湾子金矿床的应用[J]. 物探与化探, 2005,29(6):515-518.
[47] Lyu J, Wang J M, Wang H B , et al. The application of soil survey to the Sandaowanzi gold deposit[J]. Geophysical and Geochemical Exploration, 2005,29(6):515-518.
[48] 金浚, 丁汝福, 陈伟民 . 森林沼泽区矿产资源地球化学勘查[J]. 物探与化探, 2003,27(6):433-448.
[48] Jin J, Ding R F, Chen W M . Geochemical mineral exploration in forest-swamp areas[J]. Geophysical and Geochemical Exploration, 2003,27(6):433-448.
[49] 郝百武, 薛传东, 韩润生 , 等. 沟系土壤测量在贵州大厂矿田普晴锑金矿区地质找矿中的应用[J]. 地质与勘探, 2008,44(6):73-78.
[49] Hao B W, Xue C D, Han R S , et al. Application of soil geochemistry of drainage system for ore prospecting in the Puqing Sb-Au ore field[J]. Geology and Prospecting, 2008,44(6):73-78.
[50] 刁理品, 韩润生, 方维萱 . 沟系土壤地球化学测量在贵州普晴锑金矿勘查区应用与找矿效果[J]. 地质与勘探, 2010,46(1):120-127.
[50] Diao L P, Han R S, Fang W X . Application of soil geochemical survey in the Puqing antimony-gold exploration area deposit and prospecting effect[J]. Geology and Prospecting, 2010,46(1):120-127.
[51] 杨社锋, 方维萱, 胡瑞忠 , 等. 老挝南部波罗芬高原玄武岩砖红壤风化壳微量元素地球化学特征[J]. 矿产与地质, 2005,19(6):723-727.
[51] Yang S F, Fang W X, Hu R Z , et al. Geochemical characteristics of trace elements of basalt laterite regolith section in Boloven plateau, south Laos[J]. Mineral resources and geology, 2005,19(6):723-727.
[52] Jia R X, Fang W X, Hu R Z . Geochemical characteristics and significance of major elements, trace elements and REE of NM copper polymetal deposit in Laos[J]. Journal of Rare Earths, 2010,28(2):305-311.
[53] 贾润幸, 方维萱 . 热带雨林景观区土壤测量的应用效果[J]. 物探与化探, 2011,35(4):443-447.
[53] Jia R X, Fang W X . The application effect of soil survey in rainforest area of Laos[J]. Geophysical and Geochemical Exploration, 2011,35(4):443-447.
[54] 张道红, 孙媛 . 缅甸达贡山含镍风化壳地质地球化学特征及成矿作用[J]. 桂林理工大学学报, 2010,30(3):332-338.
[54] Zhang D H, Sun Y . Geological-geochemistry characteristics and mineral genesis of nickel-bearing weathering crust in Taguang Taung, Myanmar[J]. Journal of Guilin University of Technology, 2010,30(3):332-338.
[55] 陈玉明, 王开天 . 秘鲁胡斯塔铜矿原生晕地球化学特征及找矿效果[J]. 物探与化探, 2008,32(2):126-130.
[55] Chen Y M, Wang T K . Lithogeochemical characteristics of the Justa copper deposit in Peru and the ore-prospecting effect[J]. Geophysical and Geochemical Exploration, 2008,32(2):126-130.
[56] 陈玉明, 夏修展, 甘秋玲 , 等. 阿根廷米纳毕戈塔地区水系沉积物采样粒度试验研究[J]. 地质找矿论丛, 2016,31(2):295-302.
[56] Chen Y M, Xia X Z, Gan Q L , et al. Test study on particle size sampling of stream sediment in Minas Pirquitas Area of Argentina[J]. Contributions to Geology and Mineral Resources Research, 2016,31(2):295-302.
[57] 罗正传 . 土壤地球化学测量在智利阿尔法矿区的应用效果[J]. 物探与化探, 2010,34(4):472-475.
[57] Luo Z Z . The effect of applying soil geochemical survey in the Aifa ore district, Chile[J]. Geophysical and Geochemical Exploration, 2010,34(4):472-475.
[58] 王明国, 白凤军, 张晓永 , 等. 土壤地球化学测量在智利Henan X矿区应用效果[J]. 物探化探计算技术, 2013,35(6):727-732.
[58] Wang M G, Bai F J, Zhang X Y , et al. The applying effect on soil geochemical survey in the Henan X ore district, Chile[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013,35(6):727-732.
[59] 王明国, 张晓永, 白凤军 , 等. 土壤地球化学测量在智利塔拉帕卡大区地质勘查中的应用[J]. 物探与化探, 2013,37(3):394-399.
doi: 10.11720/j.issn.1000-8918.2013.3.04
[59] Wang M G, Zhang X Y, Bai F J , et al. The application of soil geochemical survey to geological prospecting in Tarapacá region, Chile[J]. Geophysical and Geochemical Exploration, 2013,37(3):394-399.
[60] 王晓辉, 王英超, 龙康华 , 等. 土壤地球化学测量在智利Iquique HN矿区的应用效果[J]. 黄金科学技术, 2014,22(1):47-51.
doi: 10.3969/j.issn.1005-2518.2014.01.047
[60] Wang X H, Wang Y C, Long K H , et al. The Application Effect of Soil Geochemical Survey in the Iquique HN Mining Area of Chile[J]. Gold Science and Technology, 2014,22(1):47-51.
[61] 刘君安, 朱云鹤, 赵晓丹 , 等. 秘鲁南部干旱荒漠戈壁残山景观区水系沉积物测量取样粒度研究[J]. 矿床地质, 2014,33(S1):1115-1116.
[61] Liu J A, Zhu Y H, Zhao X D , et al. Study of sampling size of stream sediment survey in arid desert Gobi, south Peru[J]. Mineral Deposits, 2014,33(S1):1115-1116.
[62] 贺笑余, 王小高, 李丽 , 等. 智利AF矿区土壤地球化学异常特征及找矿方向[J]. 物探化探计算技术, 2014,36(5):634-640.
[62] He X Y, Wang X G, Li L , et al. Soil geochemical anomalies characteristics and the exploration direction discussion of AF deposit in Chile[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014,36(5):634-640.
[63] 王英超, 王晓辉, 郭继霜 , 等. 土壤地球化学测量在智利HIGUERILLAS铜矿区的应用效果[J]. 矿产与地质, 2015,29(2):237-242.
[63] Wang Y C, Wang X H, Guo J S , et al. The effect of applying pedogeochemical survey in Higuerillas Cu mining area Chile[J]. Mineral resources and geology, 2015,29(2):237-242.
[64] Kabata-Pendias A. Trace elements in soils and plants (Third Edition)[M]. Boca Raton: CRC Press, 2001.
[65] Dunn C E . Handbook of Exploration and Environmental Geo-chemistry,Volume 9(Handbook of Exploration and Environ-mental Geochemistry)[M]. Canada: Elsevier Science, 2007.
[66] Viladevall M, Puigserver D, Saavedra J , et al. Biogeo-chemical exploration using the thola shrub in the andean altiplano,Bolivia[J]. Geochemistry: Exploration,Environ-ment,Analysis, 2012,12(1):33-44.
[67] Oyarzún J, Levi B, Nystrom J O . AWithin-Plate Geochemical Signature and Continental Margin Setting for the Mesozoic-cenozoic Lavas of Central Chile, Second. ISAG, Oxford (UK), 1993, 419-422.
[68] Oyarzún J. Andean metallogenesis: a synoptical review and interpretation [C]//Tectonic Evolution of South America, 31st International Geological Congress, Río de Janeiro, 2000.
[69] Oyarzun R, Lillo J, Higueras P , et al. Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: Industrial (gold mining at El IndioeTambo district) vs. geologic processes[J]. Geochem. Explor, 2004,84:53-64.
[70] Oyarzun R, Guevara S, Oyarzún J , et al. The As-contaminated Elqui river basin: a long lasting perspective ( 1975 -1995) covering the initiation and development of AueCueAs mining in the high Andes of northern Chile. Environ[J]. Geochem, 2006, Hlth 28: 431-443.
[71] Oyarzun R, Lillo J, Oyarzún J , et al. Strong metal anomalies in stream sediments from semiarid watersheds in northern Chile:when geological and structural analyses contribute to understanding environmental disturbances[J]. Int. Geol. Rev., 2006,48:1133-1144.
[72] Oyarzún J, Castillo D, Maturana H , et al. Abandoned tailings deposits, acid drainage and alluvial sediments geochemistry, in the arid Elqui River Basin,North-Central Chile[J]. J. Geochem. Explor, 2012,115:47-58.
[73] Jorge O, Roberto O, Javier L , et al. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile[J]. Journal of South American Earth Sciences, 2016,69:25-42.
[74] 方维萱 . 塔西中—新生代盆—山—原镶嵌构造区与大陆动力成矿系统[ C]//中国地球科学联合学术年会论文集, 2017.
[74] Fang W X . Mesozoic Cenozoic basin mountain original mosaic structure area and the continental dynamic metallogenic system in Taxi[ C]//Proceedings of the China Earth Science Joint Academic Annual Conference, 2017.
[75] 许志琴, 赵中宝, 彭淼 , 等. 论“造山的高原”[J]. 岩石学报, 2016,32(12):3557-3571.
[75] Xu Z Q, Zhao Z B, Peng M , et al. Review of “orogenic plateau”[J]. Acta Petrologica Sinica, 2016,32(12):3557-3571.
[76] Sillitoe R H . Gold and copper Metallogeny of the central Andes: Past, present and future exploration objectives[J]. Economic Geology, 1992,87:2205-2216.
[77] Jorge O M . Geología y Yacimientos Minerales Metalogénesis Andina[J]. Economic Geology, 2008,103(4):1-6.
[78] Volker J, Joachim M, Klaus Wr , et al. Hercynian deformation and metamorphism in the Cordillera Oriental of Southern Bolivia, Central Andes[J]. Tectonophysics, 2002,345:119-130.
[79] Ewart A . The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks:with special reference to the andesite-basaltic compositional range[G]//Thorpe R S, ed. Andesites. New York:John Wiley and sons, 1982.
[80] Ramiro S S . Compendio de Geologia de Bolivia[J]. Revista Tecnia de Yacimientos Petroliferos Fiscales Bolivia, 2000,18(1-2):1-127.
[81] Friedrich L, Gerhard F, Rolf L R , et al. Pre-Cenozoic intra-plate magmatism along the Central Andes (17°S-34°S):Composition of the mantle at an active margin[J]. Science Direct, 2007,99:312-338.
[82] 张潮, 陈玉明, 赵宏军 . 南美洲中安第斯地区构造——岩浆事件与成矿[J]. 地质论评, 2017,63(S):17-18.
[82] Zhang C, Chen Y M, Zhao H J . The Tectono-magmatic events and mineralization in the central Andes of south america[J]. Geological Review, 2017,63(S):17-18.
[83] 赵宏军, 卢民杰, 邱瑞照 , 等. 浅谈安第斯成矿带铜矿时空分布规律[ C]//中国地球科学联合学术年会会议论文, 2014.
[83] Zhao H J, Lu M J, Qiu R Z , et al. Discussion on the temporal and spatial distribution of copper deposits in the Andean metallogenic belt[ C]// China Earth Science Joint Academic Annual Meeting, 2014.
[84] 杜玉龙, 方维萱 . 安第斯玻利维亚段金属成矿带及战略选区方向探讨[J]. 矿物学报, 2017,37(增刊):876-877.
[84] Du Y L, Fang W X . Discussion on metallogenic belt and strategic selection direction in the Bolivian section of Andes[J]. Acta Mineralogica Sinica, 2017,37(S):876-877.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com