Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 320-328    DOI: 10.11720/wtyht.2019.1397
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
空间域和频率域平面位场延拓影响因素和稳定性分析
刘芬1,2,3, 王万银1,2,3, 纪晓琳1,2,3
1. 长安大学 地质工程与测绘学院,陕西 西安 710054
2. 长安大学 重磁方法技术研究所,陕西 西安 710054
3. 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054
Influence factors and stability analysis of plane potential field continuation in space and frequency domains
Fen LIU1,2,3, Wan-Yin WANG1,2,3, Xiao-Lin JI1,2,3
1. College of Geology Engineering and Geomatics,Chang’an University, Xi’an 710054, China;
2. Insititute of Gravity and Magnetic Technology,Chang’an University, Xi’an 710054, China;
3. Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University, Xi’an 710054, China;
全文: PDF(4544 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

位场延拓是重、磁位场数据处理的重要方法之一,高精度的位场延拓结果对后续的数据处理和解释尤为重要。笔者从平面位场延拓的基本公式出发,分析了空间域和频率域位场延拓结果精度的影响因素以及稳定性。通过理论模型测试比较了这些影响因素(场源体顶面埋深、剖面长度、扩边方法、窗口大小、点距和延拓高度)在空间域和频率域进行位场延拓时的异同性。经过测试表明,点距和延拓高度对延拓结果的影响最大,其次是剖面长度、扩边方法以及窗口大小,场源体的顶面埋深影响最小。随着顶面埋深的增大,会使延拓结果的精度降低;增大剖面长度和进行扩边会提高位场延拓结果的精度;选择合适滑动窗口可以提高计算效率,窗口越大延拓结果精度越高,窗口半径一般选择20倍延拓高度。空间域和频率域中位场延拓结果精度相当,但在空间域中,当延拓高度小于1倍点距时,延拓结果误差很大,此时需要用插值方法加密点距。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘芬
王万银
纪晓琳
关键词 位场延拓影响因素精度分析稳定性    
Abstract

Potential field continuation is one of the important methods of gravity and magnetic potential field data processing, and obtaining high-precision continuation results is particularly important for subsequent data processing and interpretation. Starting with the basic formula of plane potential field continuation, the authors analyzed the factors and the stability that affect the accuracy of continuation results in space and frequency domains. Using the theory model, the authors investigated the buried depth of the top surface of the field source, the length of the section, the method of edge enlargement, the size of the window, the dot pitch and the continuation height, and compared the different influences of these factors in space domain and frequency domain. The theory model test shows that the dot pitch and continuation height have the greatest influence on the continuation results, followed by the section length, the method of edge enlargement and the size of window, with the top surface of the field source exhibiting minimal influence. With the increase of the top surface’s depth, the continuation results accuracy is reduced. Increasing and expanding the length of the section will improve the accuracy of the field continuation results. Selecting the appropriate sliding window can improve the calculation efficiency, with the increasing window radius, the accuracy of the field continuation results is improved, and it can generally be chosen as 20 times of the continuation distance. The accuracy of the field continuation results have similarity in space domain and frequency domain; nevertheless, in space domain, the continuation error is very large when the continuation distance is less than 1 time of the dot pitch, so it needs to encrypt the dot pitch by using the interpolation method in this situation.

Key wordscontinuation of potential field    influence factors    precision analysis    stability
收稿日期: 2018-11-02      出版日期: 2019-04-10
ZTFLH:  P631  
基金资助:国家重点研发计划项目“典型覆盖区航空地球物理技术示范与处理解释软件平台开发”项目2017YFC0602200之课题“航空地球物理数据综合处理解释方法研究及软件开发”(2017YFC0602202);中国大洋“十三五”资源环境类课题“合同区海山地形单元识别与底质类型研究”(DY135-C1-1-03);中央高校基本科研业务费专项资金(310826171007)
作者简介: 刘芬(1993-),女,陕西商洛人,长安大学硕士研究生,研究方向为重、磁方法理论及应用。 Email: l3289371553@163.com
引用本文:   
刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328.
Fen LIU, Wan-Yin WANG, Xiao-Lin JI. Influence factors and stability analysis of plane potential field continuation in space and frequency domains. Geophysical and Geochemical Exploration, 2019, 43(2): 320-328.
链接本文:  
http://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1397      或      http://www.wutanyuhuatan.com/CN/Y2019/V43/I2/320
模型体 直立六面体角点坐标/km 密度ρ/
(kg/m3)
x1 x2 y1 y2 z1 z2
A1 6 8 12 13 0.4 0.8 250
A2 13 14 7 9 0.5 0.9 300
A3 5 7 5 6.5 1.5 2 500
B1 5 9 11 19 1.5 3 250
B2 10 20 5 12 1.5 3 -100
Table 1  直立六面体模型参数
Fig.1  z=0 km平面理论重力异常
Fig.2  空间域和频率域不同场源体埋深对延拓结果影响的相对均方误差分布
a—向上延拓2.0 km;b—向下延拓2.0 km;c—埋深与点距
Fig.3  空间域不同剖面长度对延拓结果影响的相对均方误差
Fig.4  空间域不同窗口半径对延拓结果的影响统计
a—不同窗口半径向上延拓;b—不同窗口半径向下延拓;c—不同窗口半径的计算时间
Fig.5  不同点距对延拓结果的影响相对均方误差分布
a—空间域不同点距向上延拓;b—频率域不同点距向上延拓;c—空间域不同点距向下延拓;d—频率域不同点距向下延拓
Fig.6  理论模型空间域和频率域位场延拓抗噪能力的相对误差分布
a—向上延拓2.0 km;b—在向下延拓2.0 km
Fig.7  万安盆地重力异常
Fig.8  万安盆地重力异常点距对延拓结果的影响测试结果
a—频率域中向上延拓1.0 km;b—空间域中向上延拓2.0 km;c—频率域中向上延拓2.0 km;d—频率域中向下延拓1.0 km;e—空间域中向下延拓2.0 km;f—频率域向下延拓2.0 km
Fig.9  实测资料空间域和频率域的抗噪能力测试
a—向上延拓2.0 km;b—向下延拓2.0 km
[1] 王邦华, 王理 . 重磁位场的正则化向下延拓[J]. 物探与化探计算技术, 1998,20(1):30-35.
[1] Wang B H, Wang L . A new normalized method of down ward extrapolation for potential field[J]. Computing Techniques for Geophysical and Geochemical exploration, 1998,20(1):30-35.
[2] 王兴涛, 夏哲仁, 石磐 , 等. 航空重力测量数据向下延拓方法比较[J]. 地球物理学报, 2004,47(6):1017-1022.
doi: 10.3321/j.issn:0001-5733.2004.06.013
[2] Wang X T, Xia Z R, Shi P , et al. A Comparison of different downward continuation methods for airborne gravity data[J]. Chinese J. Geophys., 2004,47(6):1017-1022
[3] 陈生昌, 肖鹏飞 . 位场向下延拓的波数域广义逆算法[J]. 地球物理学报, 2007,50(6):1816-1822.
doi: 10.3321/j.issn:0001-5733.2007.06.023
[3] Chen S C, Xiao P F . Wavenumber domain generalized inverse algorithm for potential field downward continuation[J]. Chinese J. Geophys, 2007,50(6):1816-1822.
[4] 徐世浙 . 位场延拓的积分—迭代法[J]. 地球物理学报, 2006,49(4):1176-1182.
doi: 10.3321/j.issn:0001-5733.2006.04.033
[4] Xu S Z . The integral-iteration method for continuation of potential fields[J]. Chinese J Geophys, 2006,49(4):1176-1182.
[5] 徐世浙 . 位场大深度向下延拓[J]. 物探与化探计算技术, 2006,28(s):29-31.
[5] Xu S Z . A great depth downward continuation of potential field. Computing techniques for geophysical and geochemical exploration, 2006,28(s):29-31.
[6] 曾小牛, 李夕海, 韩绍卿 , 等. 位场向下延拓三种迭代方法之比较[J]. 地球物理学进展, 2011,26(3):908-915.
doi: 10.3969/j.issn.1004-2903.2011.03.016
[6] Zeng X N, Li X H, Han S Q , et al. A comparison of three iteration methods for downward continuation of potential fields[J]. Progress in Geophys, 2011,26(3):908-915.
[7] 陈龙伟, 徐世浙, 胡小平 , 等. 位场向下延拓的迭代最小二乘法[J]. 地球物理学进展, 2011,26(3):894-901.
doi: 10.3969/j.issn.1004-2903.2011.03.014
[7] Chen L W, Xu S Z, Hu X P , et al. The iterative least square method for downward continuation of potential fields[J]. Progress in Geophys, 2011,26(3):894-901.
[8] Dmitriev V I . Iterative method for analytical continuation of the gravity field[J]. Computational Mathematics and Modeling, 2012,23(1):67-73.
[9] 刘东甲, 洪天求, 贾海 , 等. 位场向下延拓的波数域迭代法及其收敛性[J]. 地球物理学报, 2009,52(6):1599-1605.
doi: 10.3969/j.issn.0001-5733.2009.06.022
[9] Liu D J, Hong T Q, Jia Z H , et al. Wave number domain iteration method for downward continuation of Potential fields and its convergence.Chinese[J]. Geophys.,, 2009,52(6):1599-1605.
[10] 王彦国 . 位场数据处理的高精度方法研究及应用[D].长春:吉林大学. 2013.
[10] Wang Y G . Study and application of high-precision methods in potential-field data processing[D]. Changchun:Jilin University, 2013.
[11] 安玉林, 管志宁 . 滤除高频干扰的正则化稳定因子[J]. 物探与化探计算技术, 1985,7(1):13-23.
[11] An Y L, Guan Z N . The regularized stable factors of removing high frequency disturbances[J]. Computing Techniques for Geophysical and Geochemical exploration, 1985,7(1):13-23.
[12] 姚长利, 李宏伟, 郑元满 , 等. 重磁位场转换计算中迭代法的综合分析与研究[J]. 地球物理学报, 2012,55(6):2062-2078.
doi: 10.6038/j.issn.0001-5733.2012.06.028
[12] Yao C L, Li H W, Zhen Y M , et al. Research on iteration method using in potential field transformation[J]. Chinese J. Geophys., 2012,55(6):2062-2078.
[13] 吴姿颖, 邓居智, 王彦国 , 等. 重力向下延拓的迭代法对比分析研究[J]. 物探与化探计算技术, 2018,40(2):189-196
doi: 10.3969/j.issn.1001-1749.2018.02.08
[13] Wu Z Y, Den J Z, Wang Y G , et al. Comparative analysis on the iterative methods for downward continuation of gravity field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018,40(2):189-196.
[14] 栾文贵 . 位场解析延拓的稳定化算法[J]. 地球物理学报, 1983,26(3):263-274.
doi:
[14] Luan W G . The stabilized algorithm of the analytic continuation for the potential field[J]. Chinese J. Geophys., 1983,26(3):263-274.
[15] 毛小平, 吴蓉元, 曲赞 . 频率域位场下延的振荡机制及消除方法[J]. 石油地球物理勘探, 1998,33(2):230-237.
doi: 10.1109/ISIC.1999.796628
[15] Mao X P, Wu R Y, Qu Z . Oscillation mechanism of potential field downward continuation in frequency domain and its elimination[J]. OGP, 1998,33(2):230-237.
[16] 张辉, 陈龙伟, 任治新 , 等. 位场向下延拓迭代法收敛性分析及稳健向下延拓方法研究[J]. 地球物理学报, 2009,52(4):1107-1113.
doi: 10.3969/j.issn.0001-5733.2009.04.028
[16] Zhang H, Chen L W, Ren Z X , et al. Analysis on convergence of iteration method for potential fields downward continuation and research on robust downward continuation method[J]. Chinese J. Geophys., 2009,52(4):1107-1113.
[17] 于波, 翟国君, 刘燕春 , 等. 噪声对磁场向下延拓迭代法的计算误差影响分析[J]. 地球物理学报, 2009,52(8):2182-2188.
doi: 10.3969/j.issn.0001-5733.2009.08.029
[17] Yu B, Zhai G J. Liu Y C , et al. Analysis of noise effect on the calculation error of downward continuation with iteration Method[J]. Chinese J. Geophys., 2009,52(8):2182-2188.
[18] 陆正立 . 频率域向上延拓的误差分析[J]. 桂林冶金地质学院学报, 1981,( 1):62-68.
[18] Lu Z L . Error analysis of upward continuation in frequency domain[J]. Journal of Guilin Institute of Metallurgical Geology, 1981,( 1):62-68.
[19] 熊光楚 . 在地球物理测量的数据处理中值得进一步研究的一些问题[J]. 物探与化探, 1985,9(2):100-107.
[19] Xiong G C . Some problems worthy of further study in geophysical data processing[J]. Geophysical and Geochemical Exploration, 1985,9(2):100-107.
[20] 熊光楚 . 矿产预测中重磁异常变换的若干问题——二、向上延拓的作用及问题[J]. 物探与化探, 1992,16(5):358-455.
[20] Xiong G Z . Some problems in the transformation of gravity and magnetic anomalies in mineral prediction -two.The role and problems of upward continuation[J]. Geophysical and Geochemical Exploration, 1992,16(5):358-455.
[21] 王建明 . 重磁异常变换中的延拓问题[J].新疆有色金属, 2006(2):11-16.
[21] Wang J M . Continuation in the transformation of gravity and magnetic anomalies[J].Xinjiang Nonferrous Metals, 2006(2):11-16.
[22] 曾华霖 . 重力场与重力勘探[M]. 北京: 地质出版社, 2004.
[22] Zemg H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing Press, 2004.
[23] 王万银, 邱之云, 刘金兰 , 等. 位场数据处理中的最小曲率扩边和补空方法研究[J]. 地球物理学进展, 2009,24(4):1327-1338.
doi: 10.3969/j.issn.1004-2903.2009.04.022
[23] Wang W Y, Qiu Z Y, Liu J L , et al. There research to the extending edge and interpolation based on the minimum curvature method in potential field data processing[J]. Progress in Geophys., 2009,24(4):1327-1338.
[24] 马国庆, 孟令顺, 杜小娟 , 等. 磁法数据处理中的扩边和优化中值滤波方法的研究[J]. 物探与化探计算技术, 2010,32(2):194-199.
doi: 10.3969/j.issn.1001-1749.2010.02.016
[24] Ma G Q, Meng L S, Du X J , et al. The study of edge expansion and optim ization median filtering method in magnetic data processing[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010,32(2):194-199.
[25] 张志厚, 徐世浙, 余海龙 , 等. 位场向下延拓的迭代法的扩边方法[J]. 浙江大学学报, 2013,47(5):918-924.
doi: 10.3785/j.issn.1008-973X.2013.05.027
[25] Zhang Z H, Xu S Z, Yu H L , et al. Study of extending methods of iteration of downward continuation in potential field[J]. Journal of Zhejiang University, 2013,47(5):918-924.
[26] 段本春, 徐世浙 . 重磁局部场区域场分量处理中的扩边方法研究[J]. 物探与化探计算技术, 1997,19(4):298-304.
[26] Duan B C, Xu S Z , et al. A study of the scheme of extending in the processing of separating local field from regional field for magnetic/gravity anomaly[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1997,19(4):298-304
[1] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
[2] 陈晓晶, 虎新军, 李宁生, 安百州, 白亚东. 银川平原基于地球物理资料三维建模的深部地质构造研究[J]. 物探与化探, 2020, 44(2): 245-253.
[3] 肖高强, 宗庆霞, 向龙洲, 刀艳, 徐永强. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2): 412-418.
[4] 李朋飞, 陈富荣, 杜国强, 陶春军, 刘超, 刘坤. 安徽涡河沿岸土壤氟含量特征及其影响因素[J]. 物探与化探, 2020, 44(2): 426-434.
[5] 冯进, 赵冰, 张占松, 张超谟. 珠江口盆地惠州凹陷储层测井产能分级与识别方法[J]. 物探与化探, 2020, 44(1): 81-87.
[6] 谢薇,杨耀栋,侯佳渝,李国成,菅桂芹. 天津市蓟州区富硒土壤成因与土壤硒来源研究[J]. 物探与化探, 2019, 43(6): 1373-1381.
[7] 何涛, 王万银, 黄金明, 张明华, 杨敏. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 43(2): 308-319.
[8] 潘永敏,华明,廖启林,许书刚,张于,翟辉. 宜兴地区土壤pH值的分布特征及时空变化[J]. 物探与化探, 2018, 42(4): 825-832.
[9] 吴俊. 福建省寿宁县富硒土壤地球化学特征[J]. 物探与化探, 2018, 42(2): 386-391.
[10] 黄杰, 杨国权, 李振春, 谷丙洛. TTI介质拟声波方程数值模拟[J]. 物探与化探, 2018, 42(1): 134-143.
[11] 范芬, 刘爱群, 任科英, 吴云鹏. 乐东-陵水坡折带速度分析及时深转换方法[J]. 物探与化探, 2016, 40(6): 1185-1191.
[12] 王彦国, 张瑾. 位场高阶导数的波数域迭代法[J]. 物探与化探, 2016, 40(1): 143-147.
[13] 王小丹, 印兴耀, 杨富森. 稳定的二维TTI介质一阶qP波方程RSGFD数值模拟[J]. 物探与化探, 2016, 40(1): 135-142.
[14] 王卫星, 李攻科, 侯佳渝, 刘永涛. 天津滨海地区土壤剖面盐渍化特征及其影响因素[J]. 物探与化探, 2015, 39(1): 172-179.
[15] 张伟, 甘伏平, 刘伟, 郑智杰. 双相介质瑞雷面波有限差分正演模拟[J]. 物探与化探, 2014, 38(6): 1275-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2017《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com