Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (4): 851-858    DOI: 10.11720/wtyht.2019.1390
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
一种基于L1-L1范数稀疏表示的地震反演方法
石战战1,2, 夏艳晴1, 周怀来2, 王元君2, 唐湘蓉2
1. 成都理工大学 工程技术学院,四川 乐山 614000
2. 成都理工大学 地球物理学院,四川 成都 610059
Seismic reflectivity inversion based on L1-L1-norm sparse representation
Zhan-Zhan SHI1,2, Yan-Qing XIA1, Huai-Lai ZHOU2, Yuan-Jun WANG2, Xiang-Rong TANG2
1. The Engineering & Technical College of Chengdu University of Technology,Leshan 614000,China;
2. College of Geophysics,Chengdu University of Technology,Chengdu 610059,China
全文: PDF(4169 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高分辨率地震反演面临着:①地震反演是一个不适定问题,存在多解性;②采集和处理流程产生噪声和畸变降低反演算法的稳定性,针对这两个问题,提出一种基于L1-L1范数稀疏表示的地震反射系数反演方法。该方法利用L1范数正则化项降低反演多解性和L1范数拟合项增加噪声鲁棒性。通过井震联合提取子波构建过完备楔形子波字典,然后用L1-L1范数稀疏表示对地震信号进行稀疏分解,实现高分辨率反射系数反演。楔形模型和实际地震资料试算结果表明,该反演算法稳定,具有良好的噪声鲁棒性,通过测井资料标定检验,其反演结果准确可信。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石战战
夏艳晴
周怀来
王元君
唐湘蓉
关键词 稀疏表示双极子分解反射系数反演L1范数过完备楔形子波字典    
Abstract

High-resolution seismic inversion is confronted with two problems:First,seismic inversion is an ill-posed problem and has multiplicity of solutions,and second,noise and distortion are generated in the flows of acquisition and processing to reduce the stability of the inversion algorithm.Aimed at solving these two problems, this paper proposes an inversion method of seismic reflectivity based on L1-L1-norm sparse representation.Firstly,the L1-norm regularization term is used to reduce the inversion multiplicity,and then the L1-norm fitting term is used to enhance the noise robustness.The wavelet is extracted by well logging and seismic data to construct the over-complete wedge wavelet dictionary,and then the seismic signal is sparsely decomposed by the L1-L1-norm sparse representation,so as to realize the high-resolution reflectivity inversion.The experimental results of wedge model and actual seismic data show that the inversion algorithm is stable and has good noise robustness,and the inversion results are accurate and credible through logging data calibration.

Key wordssparse representation    dipole decomposition    reflectivity inversion    L1-norm    over-complete wedge wavelet dictionary
收稿日期: 2018-10-29      出版日期: 2019-08-15
:  P631.4  
基金资助:国家科技重大专项子课题“双极子匹配追踪反演技术研究”(2016ZX05026-001-005);四川省教育厅项目“基于时频域波形分类的礁滩储层预测方法研究”(16ZB0410)
作者简介: 石战战(1986-),讲师,成都理工大学地球物理学院在读博士研究生,主要从事储层预测方面的科研和教学工作。Email: shizhanzhan@vip.163.com
引用本文:   
石战战, 夏艳晴, 周怀来, 王元君, 唐湘蓉. 一种基于L1-L1范数稀疏表示的地震反演方法[J]. 物探与化探, 2019, 43(4): 851-858.
Zhan-Zhan SHI, Yan-Qing XIA, Huai-Lai ZHOU, Yuan-Jun WANG, Xiang-Rong TANG. Seismic reflectivity inversion based on L1-L1-norm sparse representation. Geophysical and Geochemical Exploration, 2019, 43(4): 851-858.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1390      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I4/851
Fig.1  楔形地质模型
a—反射系数模型;b—地震正演剖面
Fig.2  随机噪声敏感度对比
a、b、c、d—传统算法反演结果;e、f、g、h—L1-L1范数稀疏表示反演结果;由上到下随机噪声强度分别为0%、1%、5%和10%
Fig.3  异常值敏感度对比分析
a、b、c、d—传统算法反演结果;e、f、g、h—L1-L1范数稀疏表示反演结果;由上到下异常值数量分别为0%、1%、5%和10%
Fig.4  楔形模型反演反射系数对比分析
a—1%随机噪声和1%异常值条件下传统算法反演结果;b—1%随机噪声和1%异常值条件下L1-L1范数稀疏表示反演结果;c—5%随机噪声和5%异常值条件下传统算法反演结果;d—5%随机噪声和5%异常值条件下噪声L1-L1范数稀疏表示反演结果
Fig.5  过L1井纵剖面(a)和振幅谱(b)
Fig.6  反演反射系数对比
a—传统算法;b—L1-L1范数稀疏表示
Fig.7  反演波阻抗剖面对比
a—传统算法;b—L1-L1范数稀疏表示
Fig.8  反演波阻抗局部放大对比
a—传统算法;b—L1-L1范数稀疏表示
[1] Widess M B . How thin is a thin bed?[J]. Geophysics, 1973,38(6):1176-1180.
[2] Kallweit R S . The limits of resolution zero-phase wavelets[J]. Geophysics, 1982,47(7):1035-1046.
[3] Voogd N D, Rooijen H D . Thin-layer response and spectral bandwidth[J]. Geophysics, 1983,48(1):12-18.
[4] Chung H M, Lawton D C . Amplitude responses of thin beds; sinusoidal approximation versus Ricker approximation[J]. Geophysics, 1995,60(1):223-230.
[5] Van Riel P . Resolution in seismic trace inversion by parameter estimation[J]. Geophysics, 1985,50(9):1440-1455.
[6] Russell B H . Introduction to Seismic Inversion Methods[M]. Society of Exploration Geophysicists, 1988.
[7] Schuster G T . Seismic Inversion[M]. Society of Exploration Geophysicists, 2017.
[8] Partyka G . Interpretational applications of spectral decomposition in reservoir characterization[J]. Leading Edge, 1999,18(3):173-184.
[9] Marfurt K J, Kirlin R L . Narrow-band spectral analysis and thin-bed tuning[J]. Geophysics, 2001,66(4):1274-1283.
[10] Puryear C I, Castagna J P . An algorithm for calculation of bed thickness and reflection coefficients from amplitude spectrum[J]. SEG Technical Program Expanded Abstracts, 2006: 1767-1770.
[11] Puryear C I, Castagna J P . Layer-thickness determination and stratigraphic interpretation using spectral inversion:Theory and application[J]. Geophysics, 2008,73(2):R37-R48.
[12] Puryear C I, Portniaguine O N, Cobos C M , et al. Constrained least-squares spectral analysis:Application to seismic data[J]. Geophysics, 2012,77(5):V143-V167.
[13] Nguyen T, Castagna J . High-resolution reflectivity inversion[J]. Journal of Seismic Exploration, 2010,19(4):303-320.
[14] Zhang R, Castagna J . Seismic sparse-layer reflectivity inversion using basis pursuit decomposition[J]. Geophysics, 2011,76(6):R147-R158.
[15] Mallat S G, Zhang Z . Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993,41(12):3397-3415.
[16] Chen S S, Donoho D L, Saunders M A . Atomic decomposition by basis pursuit[J]. Siam Review, 2001,43(1):129-159.
[17] Beck A, Teboulle M . A fast iterative Shrinkage-Thresholding algorithm for linear inverse problems[J]. Siam Journal on Imaging Sciences, 2009,2(1):183-202.
[18] Becker S, Bobin J, Candès E J . NESTA:A fast and accurate first-order method for sparse recovery[J]. Siam Journal on Imaging Sciences, 2009,4(1):1-39.
[19] Zhang Z . Integrating globality and locality for robust representation based classification[J]. Mathematical Problems in Engineering, 2014,2014:1-10.
[20] Tropp J A, Gilbert A C, Strauss M J . Algorithms for simultaneous sparse approximation.Part I: Greedy pursuit[J]. Signal Processing, 2006,86(3):572-588.
[21] Tropp J A . Algorithms for simultaneous sparse approximation:part II:Convex relaxation[J]. Signal Processing, 2006,86(3):589-602.
[22] Zhang Z, Xu Y, Yang J , et al. A survey of sparse representation:algorithms and applications[J]. IEEE Access, 2017,3:490-530.
[23] Fuchs J J. Fast implementation of a l1-l1 regularized sparse representations algorithm[C]// IEEE International Conference on Acoustics,Speech and Signal Processing IEEE, 2009: 3329-3332.
[24] Yang J, Zhang Y . Alternating direction algorithms for l1-problems in compressive sensing[J]. Siam Journal on Scientific Computing, 2009,33(1):250-278.
[25] Claerbout J F, Muir F . Robust modeling with erratic data[J]. Geophysics, 1973,38(5):826-844.
[26] Morozov I B . Geometrical attenuation,frequency dependence of Q,and the absorption band problem[J]. Geophysical Journal International, 2008,175(1):239-252.
[27] Cheng H X, Kennett B L N . Frequency dependence of seismic wave attenuation in the upper mantle beneath the Australian region[J]. Geophysical Journal International, 2010,150(1):45-57.
[28] Zhou H. Practical seismic data processing[M]. Cambridge University Press, 2014.
[29] Zhang F, Dai R, Liu H . Seismic inversion based on L1-norm misfit function and total variation regularization[J]. Journal of Applied Geophysics, 2014,109:111-118.
[30] Gabay D, Mercier B . A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers & Mathematics with Applications, 1976,2(1):17-40.
[31] Boyd S, Parikh N, Chu E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2011,3(1):1-122.
[32] He B, Yuan X . On the O(1/n) convergence rate of the douglas-rachford alternating direction method[J]. Siam Journal on Numerical Analysis, 2012,50(2):700-709.
[33] Chung H, Lawton D C . Frequency characteristics of seismic reflections from thin beds[J]. Canadian Journal of Exploration Geophysics, 1995,31(1):8-32.
[1] 罗勇, 毛海波, 杨晓海, 李文捷, 陈文超. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018, 42(3): 608-615.
[2] 郭奇, 曾昭发, 于晨霞, 张思萌. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5): 907-913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com