Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 329-337    DOI: 10.11720/wtyht.2019.1347
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
热释汞:一种冻土区天然气水合物地球化学勘查新技术
张富贵1,2, 周亚龙1,2, 张舜尧1,2, 唐瑞玲1, 王惠艳1,2, 孙忠军1,2
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 地球表层碳—汞地球化学循环重点实验室,河北 廊坊 065000;
Thermal-release mercury—An new tool for natural gas hydrate exploration
Fu-Gui ZHANG1,2, Ya-Long ZHOU1,2, Shun-Yao ZHANG1,2, Rui-Ling TANG1, Hui-Yan WANG1,2, Zhong-Jun SUN1,2
1. Institute of Geophysical& Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000,China;
2. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth’s Critical Zone, Langfang 065000,China;
全文: PDF(3468 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

开发地球化学勘查新技术是提高中纬度冻土区天然气水合物探井预测成功率的重要课题之一。本文选择在祁连山聚乎更天然气水合物已知区进行土壤热释汞勘查技术试验,试验区为高寒沼泽景观,面积150 km 2,采样密度2点/km 2,采样深度60 cm,采集土壤样品300件,应用测汞仪对土壤样品进行了热释汞分析。试验结果表明,土壤热释汞在天然气水合物矿藏边界出现高值异常,在天然气水合物上方是低值带,与烃类异常浓度范围一致,为串珠状异常模式,热释汞最大值为127.37×10 -9,平均值为32.59×10 -9,异常下限为39.24 ×10 -9。结合地质和地球化学勘查成果进行了综合解释,认为祁连山聚乎更地区热释汞异常与天然气水合物矿藏关系密切,源于深部水合物矿藏,对天然气水合物进一步调查具有重要的参考价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张富贵
周亚龙
张舜尧
唐瑞玲
王惠艳
孙忠军
关键词 热释汞天然气水合物高寒沼泽冻土区祁连山    
Abstract

The development of geochemical exploration technologies unaffected by marsh microorganisms is necessary for improving the prediction of wells and exploring natural gas hydrates in mid-latitude permafrost areas. The potential of thermal-release mercury as a new tool for the investigation of gas hydrates in permafrost areas was studied in this paper. The study area, covering 150 km 2, is located in the alpine-arctic swamp landscape of the Qilian Mountain. The sampling density and depth were 1 or 2 points/km 2 and 60 cm, respectively. In total, 300 soil samples were collected and the mercury vapor analyzer was used to measure soil thermal-release mercury. The results indicate that thermal-release mercury anomalies were identified in the gas hydrate deposits. There is maximum thermal-release mercury over the gas hydrate boundary and minimum thermal-release mercury with pinch-and-swell from over the gas hydrate reservoir. The maximum thermal-release mercury is 127.37×10 -9, with the average being 32.59×10 -9, and the threshold of anomaly is 39.24×10 -9. A comprehensive interpretation was conducted based on geological and geochemical survey results. The relationship between the hydrocarbon of gas hydrates anomalies and thermal-release mercury anomalies was further explored. The authors propose a geogas migration mechanism of soil thermal-release mercury in the soil above the natural gas hydrate deposit. The anomalies near the ground surface of the Muli coalfield in the Qilian Mountain were derived from the deep hydrate deposits and fault structures, which were not affected by marsh microorganisms, and they have important reference value for natural gas hydrate exploration in permafrost areas.

Key wordsthermal-release mercury    natural gas hydrate    alpine swamp    permafrost    Qilian Mountain
收稿日期: 2018-09-25      出版日期: 2019-04-10
:  P632  
基金资助:中国地质调查局地质项目调查(DD20160224);中央级公益性科研院所基本科研业务费专项(AS2016Y01)
作者简介: 张富贵(1980-),男,硕士,高级工程师,毕业于成都理工大学,主要从事油气和天然气水合物研究与勘查工作。Email: zhangfugui@igge.cn
引用本文:   
张富贵, 周亚龙, 张舜尧, 唐瑞玲, 王惠艳, 孙忠军. 热释汞:一种冻土区天然气水合物地球化学勘查新技术[J]. 物探与化探, 2019, 43(2): 329-337.
Fu-Gui ZHANG, Ya-Long ZHOU, Shun-Yao ZHANG, Rui-Ling TANG, Hui-Yan WANG, Zhong-Jun SUN. Thermal-release mercury—An new tool for natural gas hydrate exploration. Geophysical and Geochemical Exploration, 2019, 43(2): 329-337.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1347      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I2/329
Fig.1  祁连山聚乎更矿区天然气水合物矿藏地质简图(根据青海煤炭地质105队修改[26])
Fig.2  祁连山聚乎更矿区土壤热释汞分形图
分析层次 多重分维(Di) 含量区间/10-9 样品数 界线点(ri0)/10-9
1 0.292 5.90~19.48 44 r12=19.48
2 1.537 19.97~39.24 79 r23=39.24
3 2.260 39.82~55.04 25 r34=55.04
4 2.835 58.56~127.37 16
Table 1  祁连山土壤热释汞分形特征统计
指标 酸解烃 热释汞
甲烷 重烃
最大值 1167.4 103.59 127.37
最小值 1.3 0.05 5.9
平均值 25.97 2.2 32.59
变异系数 4.47 4.16 0.66
Table 2  祁连山土壤地球化学指标含量特征
Fig.3  祁连山聚乎更矿区土壤热释汞地球化学异常与地质构造
Fig.4  祁连山聚乎更矿区土壤酸解烃甲烷地球化学异常
Fig.5  祁连山聚乎更矿区土壤酸解烃重烃地球化学异常
Fig.6  祁连山冻土区钻井岩心气成因的气体组成和同位素综合判别
[1] Collett T S . Permafrost-associated gas hydrate accumulations[J]. Annals of the New York Academy of Sciences, 2010,715(1):247-269.
doi: 10.1111/j.1749-6632.1994.tb38839.x
[2] Dallimore S R . Regional gas hydrate occurrences,permafrost conditions,and Cenozoic geology,Mackenzie Delta area[J]. Bulletin of the Geological Survey of Canada, 1999,544:31-43.
[3] Dallimore S R, Collett T S . Scientific results from the mallik 2002 gas hydrate production research well program,mackenzie delta,northwest territories,Canada[J]. Bulletin of the Geological Survey of Canada, 2005,585:36.
[4] 周幼吾, 郭东信, 邱国庆 , 等 . 中国冻土[M]. 北京: 科学出版社, 2000.
[4] Zhou Y W, Guo D X, Qiu G Q , et al. China’s permafrost [M]. Beijing: Science Press, 2000.
[5] 祝有海, 卢振权, 谢锡林 . 青藏高原天然气水合物潜在分布区预测[J]. 地质通报, 2011,30(12):1918-1926.
doi: 10.3969/j.issn.1671-2552.2011.12.016
[5] Zhu Y H, Lu Z Q, Xie X L . Potential distribution of gas hydrate in the Qinghai-Tibetan Plateau[J]. Geological Bulletin of China, 2011,30(12):1918-1926.
[6] 祝有海, 张永勤, 文怀军 , 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009,83(11):1762-1771.
doi: 10.3321/j.issn:0001-5717.2009.11.018
[6] Zhu Y H, Zhang Y Q, Wen H J , et al. Gas hydrates in the Qilian mountain permafrost,Qinghai,northwest China[J]. Acta Geologica Sinica, 2009,83(11):1762-1771.
[7] Lu Z, Zhu Y, Zhang Y , et al. Gas hydrate occurrences in the Qilian Mountain permafrost,Qinghai Province, China[J]. Cold Regions Science & Technology, 2011,66(2-3):93-104.
doi: 10.1016/j.coldregions.2011.01.008
[8] Schmitt D R, Welz M, Rokosh C D . High-resolution seismic imaging over thick permafrost at the 2002 Mallik drill site[J]. Bulletin of the Geological Survey of Canada, 2005,585:1-13.
[9] Riedel M, Bellefleur G, Mair S , et al. Acoustic impedance inversion and seismic reflection continuity analysis for delineating gas hydrate resources near the Mallik research sites,Mackenzie Delta,Northwest Territories,Canada[J]. Geophysics, 2009,74(5):125-137.
[10] Collett T S, Ehligio-Economides C A . Detection and evaluation of the in-situ natural gas hydrates in the north Slope Regn,Alaska [J]. Society of Petroleum Engineers California Regional Meeting, 1983, spe 11673: 23-25.
[11] Fang H, Xu M, Lin Z , et al. Geophysical characteristics of gas hydrate in the Muli area, Qinghai province[J]. Journal of Natural Gas Science & Engineering, 2017,37:539-550.
doi: 10.1016/j.jngse.2016.12.001
[12] 王平康, 祝有海, 卢振权 , 等. 祁连山冻土区天然气水合物岩性和分布特征[J]. 地质通报, 2011,30(12):1839-1850.
doi: 10.3969/j.issn.1671-2552.2011.12.005
[12] Wang P K, Zhu Y H, Lu Z Q , et al. Gas hydrate in the Qilian Mountain permafrost and its distribution characteristics[J]. Geological Bulletin of China, 2011,30(12):1839-1850.
[13] Sun Z J, Yang Z B,M H ,et al. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains,China[J]. Journal of Geochemical Exploration, 2014,139:160-169.
doi: 10.1016/j.gexplo.2013.10.006
[14] 杨志斌, 孙忠军, 李广之 , 等. 青海省天峻县木里地区天然气水合物发现区浅表地球化学特征[J]. 地质通报, 2011,30(12):1883-1890.
doi: 10.3969/j.issn.1671-2552.2011.12.011
[14] Yang Z B, Sun Z J, Li G Z , et al. Near-surface soil geochemistry of Muli natural gas hydrate area,Tianjun County,Qinghai Province[J]. Geological Bulletin of China, 2011,30(12):1883-1890.
[15] 孙忠军, 杨志斌, 秦爱华 , 等. 中纬度带天然气水合物地球化学勘查技术[J]. 吉林大学学报:地球科学版, 2014,44(4):1063-1070.
doi: 10.13278/j.cnki.jjuese.201404101
[15] Sun Z J, Yang Z B, Qin A H , et al. Geochemical exploration technology of natural gas hydrate in middle-latitudes permafrost Zone[J]. Journal of Jinlin University:Earth Science Edition, 2014,44(4):1063-1070.
[16] 杨育斌, 张金来, 吴学明 . 油气地球化学勘查 [M]. 武汉: 中国地质大学出版社, 1995.
[16] Yang Y B, Zhang J L, Wu X M. Oil and gas geochemical exploration [M]. Wuhan: China University of Geosciences Press, 1995.
[17] 黎绍杰 . 油气地球化学场中的吸附相态汞特征及其应用价值[J]. 矿产与地质, 1998,12(4):281-286.
[17] Li S J . The features of absorption mercury and their application in oil-gas Geochemical field[J]. Mineral Resources and Geology, 1998,12(4):281-286.
[18] 陈远荣, 戴塔根, 庄晓蕊 , 等. 烃、汞等气体组分垂向运移的主要控制因素[J]. 中国地质, 2001,28(8):28-32.
doi: 10.3969/j.issn.1000-3657.2001.08.005
[18] Cheng Y R, Dai T G, Zhuang X R , et al. Main controlling factors for vertical migration of hydrocarbon components such as hydrocarbons and mercury[J]. Chinese Geology, 2001,28(8):28-32.
[19] 贾国相 . 利用土壤吸附态汞寻找油气田的有效实例[J]. 矿产与地质, 2000,14(6):526-529.
[19] Jia G X . An effective example of using oil-adsorbed mercury to find oil and gas fields[J]. Mineral Resources and Geology, 2000,14(6):526-529.
[20] Lu Z, Tang S, Wang W , et al. Study on the nature on the gas source for permafrost associated gas hydrate in Sanlutian of Muli,Qinghai[J]. Geoscience, 2015,29:995-1001.
[21] 李广之, 袁子艳, 庄原 , 等. 汞元素的石油地质意义[J]. 物探与化探, 2008,32(2):143-146.
[21] Li G Z, Yuan Z Y, Zhuang Y , et al. Geological significance of mercury element for petroleum exploration[J]. Geophysical and Geochemical Exploration, 2008,32(2):143-146.
[22] Xie X J . Local and regional surface geochemical exploration for oil and gas[J]. Journal of Geochemical Exploration, 1992,42:25-42.
doi: 10.1016/0375-6742(92)90022-Z
[23] 阳翔, 赵友方, 姚锦琪 . 油气藏上方汞异常成因机理浅析[J]. 矿产与地质, 2000,14(6):397-400.
doi: 10.3969/j.issn.1001-5663.2000.06.012
[23] Yang X, Zhao Y F, Yao J Q . Analysis on Hg anomaly froming mechanism above oil and gas reservoir[J]. Mineral Resources and Geology, 2000,14(6):397-400.
[24] 张富贵, 唐瑞玲, 杨志斌 , 等. 陆域天然气水合物地球化学勘查技术试验研究[J]. 物探与化探, 2013,37(6):1043-1047.
doi: 10.11720/j.issn.1000-8918.2013.6.17
[24] Zhang F G, Tang R L, Yang Z B , et al. Experimental research on geochemical methods for prospecting gas hydrates in permafrost area[J]. Geophysical &Geochemical Exploration, 2013,37(6):1043-1047.
[25] 符俊辉, 周立发 . 南祁连盆地石炭—侏罗纪地层区划及石油地质特征[J]. 西北地质科学, 1998,19(2):47-54.
[25] Fu J H, Zhou L F . Carboniffrous-Jurassic stratigraphic provinces of the southern Qilian basin and their petro-geological features[J]. Northwest Geoscience, 1998,19(2):47-54.
[26] 文怀军, 邵龙义, 张永红 . 青海省天峻县木里煤田聚乎更矿区构造轮廓和地层格架成果报告[R]. 青海煤炭地质105队, 2006.
[26] Wen H J, Shao L Y, Zhang Y H . Report on the structural contour and stratigraphic framework of the Juhugeng mining area in Muli coalfield, Tianjun County, Qinghai Province[R]. No. 105 Geological Team of Qinghai Coal, 2006
[27] Wang P, Zhu Y, Lu Z , et al. Gas hydrate stability zone migration occurred in the Qilian mountain permafrost,Qinghai,Northwest China: Evidences from pyrite morphology and pyrite sulfur isotope[J]. Cold Regions Science and Technology, 2014,98:8-17.
doi: 10.1016/j.coldregions.2013.10.006
[28] 张家政, 祝有海, 黄霞 , 等. 南祁连盆地木里冻土区天然气水合物烃源岩特征及评价[J]. 地质通报, 2017,36(4):634-643.
[28] Zhang J Z, Zhu Y H, Huang X , et al. Characterization and evaluation on the source rock of gas hydrate in Muli permafrost area, Nanqilian Basin[J]. Geolog Bull China, 2017,36(4):634-643.
[29] 张富贵, 张舜尧, 唐瑞玲 , 等. 青藏高原湿地冻土区活动层甲烷排放特征[J]. 物探与化探, 2017,41(6):1027-1036.
doi: 10.11720/wtyht.2017.6.06
[29] Zhang F G, Zhang S Y, Tang R L , et al. Methane emission of active layer in Qinghai-Tibet wetland permafrost area[J]. Geophysical & Geochemical Exploration, 2017,41(6):1027-1036.
[30] 李长江, 麻士华 . 矿产勘查中的分形、混沌与ANN [M]. 北京: 地质出版社, 1999.
[30] Li C J, Ma S H . Fractal, chaos and ANN in mineral exploration[M]. Beijing:Geological publishing house, 1999.
[31] Cheng Q, Agterberg F P, Ballantyne S B . The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994,51(2):109-130.
doi: 10.1016/0375-6742(94)90013-2
[32] Cheng Q . Multifractality and spatial statistics[J]. Computers & Geosciences, 1999,25(9):949-961.
doi: 10.1016/s0098-3004(99)00060-6
[33] 成秋明 . 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J]. 地球科学:中国地质大学学报, 2001,26(2):55-60.
doi: 10.3321/j.issn:1000-2383.2001.02.010
[33] Cheng Q M . Multifactal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies[J]. Earth Science:Journal of China University of Geosciences, 2001,26(2):55-60.
[34] 申维 . 分形混沌与矿产预测 [M]. 北京: 地质出版社, 2002.
[34] Shen W . Fractal Chaos and Mineral Prediction[M]. Beijing:Geological publishing house, 2002.
[35] 孙忠军, 方慧, 刘建勋 , 等. 中纬度冻土区天然气水合物物化探技术成果报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2017.
[35] Sun Z J, Fang H, Liu J X , et al. Report on the results of natural gas hydrate geochemical exploration technology in mid-latitude frozen soil area[R].Institute of Geophysical& Geochemical Exploration, Chinese Academy of Geological Sciences, 2017.
[36] 方慧, 裴发根, 徐明才 , 等. 陆域天然气水合物勘查技术研究与集成成果报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2016.
[36] Fang H, Pei F G, Xu M C , et al. Report on research and integration results of land gas hydrate exploration technology[R].Institute of Geophysical& Geochemical Exploration, Chinese Academy of Geological Sciences, 2016.
[37] 戴金星 . 戴金星天然气地质和地球化学论文集(卷二)(天然气地球化学篇) [M]. 北京: 石油工业出版社, 2000.
[37] Dai J X. Selected works of natural gas geology and geochemistry(Vol.5)(Natural Gas Geochemistry) [M]. Beijing: Petroleum industry Press, 2000.
[38] Collett T S, Lee M W, Agena W F , et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011,28, 279-294.
doi: 10.1016/j.marpetgeo.2009.12.001
[1] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[2] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[3] 李洋, 刘东明, 林振洲, 王宇航, 贾定宇, 欧洋. 木里地区水合物钻孔井壁构造裂缝特征[J]. 物探与化探, 2019, 43(1): 84-89.
[4] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[5] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[6] 李春亮, 张炜. 甘肃省祁连山西段地球化学分区及其特征[J]. 物探与化探, 2018, 42(2): 312-315.
[7] 林振洲, 刘东明, 潘和平, 李洋, 高文利, 邱礼泉, 张小未. 木里地区天然气水合物测井响应特征[J]. 物探与化探, 2017, 41(6): 1012-1018.
[8] 方慧, 裴发根, 何梅兴, 白大为, 胡祥云, 钟清, 杜炳锐, 张小博, 卢景奇. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017, 41(6): 1068-1074.
[9] 姜春香, 李培, 王小江, 荣立新, 陈德元. 木里地区天然气水合物地震属性分析[J]. 物探与化探, 2017, 41(6): 1019-1026.
[10] 周亚龙, 张富贵, 杨志斌, 唐瑞玲, 孙忠军, 张舜尧, 王惠艳. 祁连山冻土区天然气水合物游离气测量技术试验[J]. 物探与化探, 2017, 41(6): 1075-1080.
[11] 张富贵, 张舜尧, 唐瑞玲, 王惠艳, 杨志斌, 周亚龙, 孙忠军. 青藏高原湿地冻土区活动层甲烷排放特征[J]. 物探与化探, 2017, 41(6): 1027-1036.
[12] 徐建宇, 姜春香, 张保卫, 岳航羽. 浅层地震技术在陆域天然气水合物勘探中存在的问题及对策[J]. 物探与化探, 2017, 41(6): 1127-1132.
[13] 李金丽, 曲英铭, 刘建勋, 岳航羽, 李培, 陈德元. 天然气水合物储层弹性波最小二乘逆时偏移研究[J]. 物探与化探, 2017, 41(6): 1050-1059.
[14] 覃瑞东, 林振洲, 潘和平, 秦臻, 邓呈祥, 纪扬, 徐伟. 木里地区水合物及岩性测井识别方法[J]. 物探与化探, 2017, 41(6): 1088-1098.
[15] 白大为, 杜炳锐, 张鹏辉. 基于希尔伯特-黄变换的低频探地雷达弱信号处理技术及其在天然气水合物勘探中的应用[J]. 物探与化探, 2017, 41(6): 1060-1067.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com