Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 626-633    DOI: 10.11720/wtyht.2019.1337
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
分频振幅检测 “亮点”型浅层气的方法研究及应用
孔栓栓, 韩自军, 张德龙, 乔柱, 温宏雷
中海石油(中国)有限公司天津分公司 渤海石油研究院,天津 300459
The study and application of the method using frequency division amplitude to recognizing "bright spot" shallow gas layers
Shuan-Shuan KONG, Zi-Jun HAN, De-Long ZHANG, Zhu QIAO, Hong-Lei WEN
Bohai Oilfield Research Institute,Tianjin Branch Company of CNOOC,Tianjin 300459,China
全文: PDF(6893 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

渤中A油田浅层发育大量“亮点”型浅层气,此类气层的识别受调谐厚度的水层影响严重。针对该问题,笔者充分考虑气层、水层产生强振幅的主控因素的差异性,利用正演模拟,分析并总结了不同厚度的气层与调谐厚度的水层在不同分频体上的振幅能量响应规律,提出了利用分频振幅检测浅层“亮点”型气层的方法。将该方法应用于渤中A油田的浅层气预测中,取得了较好的效果,有效地指导了评价井位的部署,对渤海油田类似的气层预测研究具有一定参考价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔栓栓
韩自军
张德龙
乔柱
温宏雷
关键词 “亮点”型浅层气调谐厚度分频振幅    
Abstract

The shallow layer of Bozhong A oilfield develops a large number of "bright spot" gas-bearing reservoirs.The identification of these reservoirs is seriously affected by the water-bearing reservoirs with the tuning thickness.To solve this problem,the authors,based on the difference of the main control factors of the strong amplitude caused by the gas and water layers,analyzed and summarized the amplitude energy response law of the different thickness of the gas layer and the water layer with tuned thickness,and proposed the method for detecting the shallow "bright spot" type gas layer by using the frequency-dividing amplitude.The method was successfully applied to the prediction of gas-bearing reservoirs in Bozhong A oilfield,and guided the well-appraisal proposal efficiently.This method can be potentially applied to the other gas-bearing reservoirs prediction in Bohai and provide reliable technical supports for well deployment of oil and gas exploration.

Key words"bright spot" gas layers    tuning thickness    frequency-dividing amplitude
收稿日期: 2018-10-01      出版日期: 2019-05-31
:  P631.4  
基金资助:十三五国家科技重大专项“渤海海域勘探新领域及关键技术研究”(2016ZX05024-003)
引用本文:   
孔栓栓, 韩自军, 张德龙, 乔柱, 温宏雷. 分频振幅检测 “亮点”型浅层气的方法研究及应用[J]. 物探与化探, 2019, 43(3): 626-633.
Shuan-Shuan KONG, Zi-Jun HAN, De-Long ZHANG, Zhu QIAO, Hong-Lei WEN. The study and application of the method using frequency division amplitude to recognizing "bright spot" shallow gas layers. Geophysical and Geochemical Exploration, 2019, 43(3): 626-633.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1337      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/626
Fig.1  已钻井的地球物理参数交会
Fig.2  双楔形正演模型(a)及其正演合成记录(b)
Fig.3  气层与水层的振幅随厚度的变化关系
Fig.4  双楔形模型正演记录的振幅随频率变化
Fig.5  矩形正演模型(a)及其正演合成记录(b)
Fig.6  图5b所示合成记录的分频体剖面
流体相 水层 气层
储层厚度 = < = >
低频体 - - + +
中频体 + + ++ +
高频体 - + + +
Table 1  气层和水层的反射振幅随频率的强弱变化规律
Fig.7  基于分频振幅检测的“亮点”型浅层气识别流程
Fig.8  过A1井的地震分频剖面及岩性柱状
Fig.9  过A2井的地震分频剖面及岩性柱状
Fig.10  渤中A油田某目的层的分频振幅平面属性
Fig.11  图10中白色连井线的地震剖面
[1] 张军华, 王庆峰, 张晓辉 , 等. 薄层和薄互层叠后地震解释关键技术综述[J]. 石油物探, 2017,56(4):459-471.
[1] Zhang J H, Wang Q F, Zhang X H , et al. Poststack interpretation key techniques for thin layer and thin interbed reservoirs[J]. Geophysical Prospecting for Petroleum, 2017,56(4):459-471.
[2] 刘伟, 曹思远 . “亮点”型含气储层与薄层调谐的识别[J]. 石油地球物勘探, 2015,50(4):678-683,705.
[2] Liu W, Cao S Y . Identification of gas reservoir related with bright spots and thin-bed tuning[J]. OGP, 2015,50(4):678-683,705.
[3] 杨贵祥 . 基于调谐频率与分频处理的高分辨率反演技术[J]. 石油物探, 2006,45(3):242-244.
[3] Yang G X . High resolution inversion based on tuning frequency and frequency decomposition[J]. Geophysical Prospecting for Petroleum, 2006,45(3):242-244.
[4] 高静怀, 陈文超, 李幼铭 , 等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 2003,46(4):526-532.
[4] Gao J H, Chen W C, Li Y M , et al. Generalized S transform and seismic responsean alysis of thin inter beds[J]. Chinese Journal of Geophysics, 2003,46(4):526-532.
[5] Castagna J P, Sun S, Siegfried R W . Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbon[J]. The Leading Edge, 2003,22(2):120-127.
doi: 10.1190/1.1559038
[6] Kong S S, H.Zijun ,Z.Delong . A High Resolution Reservoir Prediction Based On Pre-Stack Inversion with DE:A Case Study in KX Oilfield [C]//80 th EAGE Conference & Exhibition , 2018: 599.
[7] 印兴耀, 张世鑫, 张繁昌 , 等. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别[J]. 石油地球物勘探, 2010,( 3):373-380.
[7] Yin X Y, Zhang S X, Zhang F C , et al. Utilizing Russell Approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification[J]. OGP, 2010,45(3):373-380.
[8] 李英, 秦德海 . 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018,42(4):662-667.
[8] Li Y, Qin D H . The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B Oilfield[J]. Geophysical and Geochemical Exploration, 2018,42(4):662-667.
[9] 张世鑫, 印兴耀, 梁锴 , 等. 利用基于T-K算子的非线性能量衰减分析技术进行储层含油气检测[J]. 地球物理学进展, 2011,26(6):2107-2113.
doi: 10.3969/j.issn.1004-2903.2011.06.027
[9] Zhang S X, Yin X Y, Liang K , et al. Utilizing T-K operator-based nonlinear energy attenuation analysis to conduct reservoir hydrocarbon identification[J]. Progress in Geophys, 2011,26(6):2107-2113.
[10] 印兴耀, 曹丹平, 王保丽 , 等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探, 2014,49(1):22-34,46.
[10] Yin X Y, Cao D P, Wang B L , et al. Research progress of fluid discrimination with pre-stack seismic inversion[J]. OGP, 2014,49(1):22-34,46.
[11] 郝前勇, 张世鑫, 张峰 , 等. 基于频变AVO反演的频散属性估算方法及其应用[J]. 石油地球物勘探, 2013,48(2):255-261.
[11] Hao Q Y, Zhang S X, Zhang F , et al. Dispersion attributes estimation based on frequency-dependent AVO inversion and its application in hydrocarbon detection[J]. OGP, 2013,48(2):255-261.
[12] 陈学华, 贺振华, 黄德济 , 等. 时频域油气储层低频阴影检测[J]. 地球物理学报, 2009,52(1):215-221.
doi:
[12] Chen X H, He Z H, Huang D J , et al. Low frequency shadow detection of gas reservoirs in time-frequency domain[J]. Chinese Journal Of Geophysics, 2009,52(1):215-221.
[13] 张平平, 秦德海 . 含烃亮点属性在渤海黄河口凹陷明化镇组油气识别中的应用[J]. 物探与化探, 2017,41(4):684-688.
[13] Zhang P P, Qin D H . Application of bright spot containing hydrocarbon in oil and gas identification of Ming Huazhen Formation in Bohai Huang Hekou depression[J]. Geophysical and Geochemical Exploration, 2017,41(4):684-688.
[14] 李庆忠 . 含油气砂层的频率特征及振幅特征[J]. 石油地球物理勘探, 1987,22(1):1-23.
[14] Li Q Z . The frequency and amplitude of seismic waves sandstone[J]. OGP, 1987,22(1):1-23.
[15] 左国平, 吕福亮, 范国章 . 赤道几内亚湾深水海域基于部分叠加角道集的地震烃类检测[J]. 石油物探, 2017,56(6):841-852.
[15] Zuo G P, Lv F L, Fan G Z . Seismic hydrocarbon detection based on partial stack angle gathers in offshore deep-water of the Equatorial Guinea Bay[J]. Geophysical Prospecting for Petroleum, 2017,56(6):841-852.
[16] 李雪英, 陈树民, 王建民 , 等. 薄层时频特征的正演模拟[J]. 地球物理学报, 2012,55(10):3410-3419.
doi: 10.6038/j.issn.0001-5733.2012.10.024
[16] Li X Y, Chen S M, Wang J M , et al. Forward modeling studies on the time-frequency characteristics of thin layers[J]. Chinese Journal Of Geophysics, 2012,55(10):3410-3419.
[17] 赵伟, 陈小宏, 李景叶 . 薄互层调谐效应对AVO的影响[J]. 石油物探, 2006,45(6):570-573.
[17] Zhao W, Chen X H, Li J Y . Analysis of impact of thin interbed tuning effect on AVO[J]. Geophysical Prospecting for Petroleum, 2006,45(6):570-573.
[18] 李雪英, 文慧俭, 陈树民 , 等. 等厚薄互层时频特征的正演模拟[J]. 地球物理学报, 2013,56(3):1033-1042.
doi: 10.6038/cjg20130331
[18] Li X Y, Wen H J, Chen S M , et al. Forward modeling studies on the time-frequency characteristics of isopachous thin interbedding[J]. Chinese Journal Of Geophysics, 2013,56(3):1033-1042.
[19] 李伟, 岳大力, 胡光义 , 等. 分频段地震属性优选及砂体预测方法——秦皇岛32-6油田北区实例[J]. 石油地球物理勘探, 2017,52(1):21-130.
[19] Li W, Yue D L, Hu G Y , et al. Frequency-segmented seismic attribute optimization and sandbody distribution prediction:an example in North Block,Qinghuangdao 32-6 Oilfield[J]. OGP, 2017,52(1):121-130.
[20] 高静怀, 刘乃豪, 吕奇 , 等. 薄互层型油气储层同步挤压变换域分析方法[J]. 石油物探, 2018,57(4):512-521.
[20] Gao J H, Liu N H, Lv Q , et al. Characterization of thin interbedded reservoir using synchrosqueezing transform[J]. Geophysical Prospecting for Petroleum, 2018,57(4):512-521.
[21] 王静波, 陈祖庆, 蒋福友 , 等. 频率域高分辨率地震波阻抗直接反演方法研究[J]. 石油物探, 2017,56(3):416-423.
[21] Wang J B, Chen Z Q, Jiang F Y , et al. A direct-inversion method of high-resolution seismic impedance in frequency domain[J]. Geophysical Prospecting for Petroleum, 2017,56(3):416-423.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com