Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 373-379    DOI: 10.11720/wtyht.2019.1278
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
浅海海底表层速度建模技术及其应用研究
李凌云1, 梁鸿贤1, 秦宁1, 杨华臣2,3, 张建中2,3
1. 中国石油化工股份有限公司胜利油田分公司物探研究院,山东 东营 257022
2. 中国海洋大学海洋地球科学学院,山东 青岛 266100
3. 海底科学与探测技术教育部重点实验室,山东 青岛 266100
A technique for building sub-seabed velocity model in shallow sea areas and its application to seismic statics
Ling-Yun LI1, Hong-Xian LIANG1, Ning QIN1, Hua-Chen YANG2,3, Jian-Zhong ZHANG2,3
1. Geophysical Research Institute of Shengli Oilfield,SIINOPEC,Dongying 257022,China
2. College of Marine Geosciences,Ocean University of China,Qingdao 266100,China
3. Key Lab of Submarine Geosciences and Prospecting Techniques,Qingdao 266100,China
全文: PDF(6921 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

浅海海底起伏和速度变化对OBC资料成像质量产生较大影响。建立浅海海底表层速度模型不仅能够解决OBC资料的静校正问题,也可用于海底反射系数计算、双检资料合并、多次波压制等,但是,目前针对浅海海底表层速度建模的研究还不多。文中提出了针对浅海地区OBC资料的海底表层速度建模的三维初至走时反演技术,主要包括:①震源位置校正技术。根据地震波在海水中传播特征,把在海水中激发的震源位置校正至海底,使震源和接收点都位于海底,利于初至走时反演计算;②快速三维初至走时反演方法。利用回折波走时和射线方程,形成了高效率初至走时反演方法。将该技术应用于胜利油田莱州湾浅海区海底OBC资料的处理中,建立了三维海底表层速度模型,用此速度模型进行静校正,取得了良好的应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凌云
梁鸿贤
秦宁
杨华臣
张建中
关键词 OBC海底表层速度模型初至走时反演静校正    
Abstract

The topographic relief of seabed and the velocity of sub-seabed layers have great influence on imaging quality of OBC data.Estimating sub-seabed velocity models in shallow sea areas can be used not only for static correction of OBC data but also for calculation of such objects as seabed reflection coefficients,merging of OBC dual-geophone seismic data,and multiple suppression.However,there are few velocity model building methods using OBC seismic data in shallow sea areas.In this paper,the authors propose a 3-D sub-seabed velocity model building method using the first arrival times of OBC data in shallow sea areas.The new method includes shot positions correction and fast 3-D velocity inversion method using first arrival times.For the convenience of velocity model inversion,shot points are moved from their original positions to the seabed according to the diving wave ray equation.The fast 3-D velocity inversion method using the diving-wave first arrival times and offset information doesn't need ray tracing.So the new method is faster than the traditional ray tracing inversion methods.The authors applied this method to the field OBC seismic data acquired in shallow sea of the Shengli Oilfield.The static correction of OBC seismic data was performed using the inverted velocity method and the results show that the method is correct and effective.

Key wordsOBC    sub-seabed shallow layers    velocity model    first arrival times    inversion    static correction
收稿日期: 2018-07-13      出版日期: 2019-04-10
:  P631.4  
基金资助:国家科技重大专项(2017ZX05072);中国石油化工股份有限公司科研项目(p17021-3,p17021)
作者简介: 李凌云(1975-),男,工程师,主要从事层析成像方法和地震资料处理方法研究工作。Email: li_lingyun@sina.com
引用本文:   
李凌云, 梁鸿贤, 秦宁, 杨华臣, 张建中. 浅海海底表层速度建模技术及其应用研究[J]. 物探与化探, 2019, 43(2): 373-379.
Ling-Yun LI, Hong-Xian LIANG, Ning QIN, Hua-Chen YANG, Jian-Zhong ZHANG. A technique for building sub-seabed velocity model in shallow sea areas and its application to seismic statics. Geophysical and Geochemical Exploration, 2019, 43(2): 373-379.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1278      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I2/373
Fig. 1  射线路径传播示意
Fig. 2  走时及相对误差
a—理论走时(黑色实线)和校正后计算走时(红色虚线);b—校正后计算走时的相对误差
Fig. 3  观测系统示意
Fig. 4  静校正前(a)和静校正后(b)的单炮地震记录
Fig. 5  反演速度模型
Fig. 6  速度切片
a—y方向3 km处速度剖面;b—x方向2 km处速度剖面
Fig. 7  静校正前(a)和静校正后(b)的叠加剖面
[1] 崔汝国, 王彦春, 曹国滨 , 等. 胜利油田滩浅海地区地震勘探技术[J]. 物探与化探, 2006,30(5):441-445.
doi: 10.3969/j.issn.1000-8918.2006.05.014
[1] Cui R G, Wang Y C, Cao G B , et al. The application of seismic exploration technique to the beach and shallow sea area of the Shengli oil field[J]. Geophysical and Geochemical Exploration, 2006,30(5):441-445.
[2] 贺懿, 张进, 刘怀山 . 基于神经网络的面波迭代反演应用研究[J]. 西南石油大学学报:自然科学版, 2010,32(1):40-44.
doi: 10.3863/j.issn.1674-5086.2010.01.007
[2] He Y, Zhang J, Liu H S . Study on the application of iterative inversion of surface wave based on artificial neural network[J]. Journal of Southwest Petroleum University:Science and Technology Edition, 2010,32(1):40-44.
[3] 杨怀春 . 滩浅海地区高精度地震勘探采集方法研究[D]. 青岛:中国海洋大学, 2004.
[3] Yang H C . Research on high-precision seismic exploration acquisition methods in paralic zone[D]. Qingdao:Ocean University of China, 2004.
[4] 刨光宏 . 浅海地震勘探[J]. 地球物理学报, 1960,9(1):65-68.
doi:
[4] Bao G H . Shallow sea seismic exploration[J]. Chinese Journal of Geophysics, 1960,9(1):65-68.
[5] 宋玉龙, 张剑, 杨怀春 , 等. 滩浅海两栖地区油气地震勘探激发接收技术研究[J]. 地球物理学进展, 2004,19(2):424-430.
doi: 10.3969/j.issn.1004-2903.2004.02.033
[5] Song Y L, Zhang J, Yang H C , et al. Explored and receivers problem of the oil-gas seismic exploration in amphibious area[J]. Progress in Geophysics, 2004,19(2):424-430.
[6] 刘乃儒, 李建, 曹建明 , 等. 陆地节点仪器在滩浅海地震勘探中的应用研究[J]. 物探装备, 2017,27(4):221-224.
[6] Liu N R, Li J, Cao J M , et al. Application of land node instrumentation to seismic exploration in shallow sea[J]. Equipment of Geophysical Prospecting, 2017,27(4):221-224.
[7] 徐锦玺, 邱燕, 何京国 , 等. 滩浅海地震勘探采集技术应用[J]. 地球物理学进展, 2005,20(1):66-70.
doi: 10.3969/j.issn.1004-2903.2005.01.013
[7] Xu J X, Qiu Y, He J G , et al. Seismic exploration acquisition technique application of beach shallow sea[J]. Progress of Geophysics, 2005,20(1):66-70.
[8] Missiaen T, Versteeg W, Henriet J P . A new 3D seismic acquisition system for very high and ultra high resolution shallow water studies[J]. First Break, 2002,20(4):227-232.
doi: 10.1046/j.1365-2397.2002.00247.x
[9] 段卫星 . 胜利油田滩浅海地区三维高精度地震勘探采集技术研究[D]. 青岛:中国海洋大学, 2005.
[9] Duan W X . Research of 3D high-precision seismic exploring data acquisition technology in Shengli oil field paralic zone[D]. Qingdao:Ocean University of China, 2005.
[10] 陈新荣, 李继光, 顾庆雷 , 等. 胜利青东5探区滩浅海资料处理技术[J]. 物探与化探, 2011,35(3):393-397.
[10] Chen X R, Li J G, Gu Q L , et al. Research on processing techniques for seismic data from the tidal zone and shallow water area of Qingdong 5 exploration zone in the Shengli oil field[J]. Geophysical and Geochemical Exploration, 2011,35(3):393-397.
[11] 朱伟强 . 胜利滩浅海地区高精度地震资料处理方法研究[D].北京:中国科学院研究生院( 海洋研究所), 2008.
[11] Zhu W Q . Research of high-precision seismic data processing technology in paralic zone of Shengli oil field[D]. Beijing:Chinese Academy of Sciences:Institute of Oceanology, 2008.
[12] 宋玉龙 . 滩浅海地区地震勘探存在问题及其解决方法[J]. 石油物探, 2005,44(4):343-347.
doi: 10.3969/j.issn.1000-1441.2005.04.009
[12] Song Y L . Problems of seismic survey in neritic area and resolved methods[J]. Geophysical Prospecting for Petroleum, 2005,44(4):343-347.
[13] 张庆淮 . 桩海地区地震采集技术研究[D].北京:中国地质大学(北京), 2008.
[13] Zhang Q H . Research of seismic acquisition technology at Zhuanghai area[D].Beijing:China University of Geosciences(Beijing), 2008.
[14] 王东凯 . 浅海OBC资料自由表面多次波压制方法研究[D]. 青岛:中国海洋大学, 2014.
[14] Wang D K . Study on surface-related multiples attenuation of OBC data in shallow water[D]. Qingdao:Ocean University of China, 2014.
[15] Tanis M C, Shah H, Watson P A , et al. Diving-wave refraction tomography and reflection tomography for velocity model building[J]. SEG Technical Program Expanded Abstracts, 2006: 3340-3344.
[16] Zou K, Langlo L T, Ronholt G , et al. Full-waveform inversion in a shallow water environment: A North Sea 3D towed-streamer data example[J]. SEG Technical Program Expanded Abstracts, 2013: 919-923.
[17] Abreo S, Ramirez A, Vivas F , et al. Diving-wave FWI methodology applied to a Colombian Caribbean data set[J]. The Leading Edge, 2018: 291-295.
[18] Wiarda E J, Boiero D, Mathewson J . Integrated surface-to-basement velocity modeling for shallow-water environments[J]. SEG Technical Program Expanded Abstracts, 2014: 1131-1135.
[19] Ritzwoller M H, Levshin A L . Estimating shallow shear velocities with marine multicomponent seismic data[J]. Geophysics, 2002,67(6):1991-2004.
doi: 10.1190/1.1527099
[20] 胡光辉, 王立歆, 王杰 , 等. 基于早至波的特征波波形反演建模方法[J]. 石油物探, 2015,54(1):71-76.
doi: 10.3969/j.issn.1000-1441.2015.01.010
[20] Hu G H, Wang L X, Wang J , et al. Characteristics waveform inversion based on early arrival wave[J]. Geophysical Prospecting for Petroleum, 2015,54(1):71-76.
[21] Virieux J , Operto S.An overview of full-waveform inversion in exploration geophysics[J].Geophysics, 2009, 74(6):WCC1-WCC26.
[22] Zhang J Z, Shi J J, Song L P , et al. Linear traveltime perturbation interpolation: a novel method to compute 3-D traveltime[J]. Geophysical Journal International, 2015,203(1):548-522.
doi: 10.1093/gji/ggv316
[23] Zhang J, Huang Y, Song L , et al. Fast and accurate 3-D ray tracing using bilinear traveltime interpolation and the wave front group marching[J]. Geophysical Journal International, 2011,184(3):1327-1340.
doi: 10.1111/j.1365-246x.2010.04909.x
[24] 王明魁 . 岩土层速度结构回折波探测原理与方法[J]. 东北地震研究, 1994,10(4):8-18.
[24] Wang M K . Principle and method detecting velocity structure in rock-solid layer by reverse branch[J]. Seismological Research of Northeast China, 1994,10(4):8-18.
[25] 李松林, 宋占隆, 石金虎 , 等. 利用地震回折波资料反演界面位置与速度分布[J]. 地震研究, 1997,20(4):62-69.
[25] Li S L, Song Z H, Shi J H , et al. Inversion of interface positions and velocity values using refracted waves[J]. Journal of Seismological Research, 1997,20(4):62-69.
[26] Gibson B S . Nonlinear least-squares inversion of traveltime data for a linear velocity-depth relationship[J]. Geophysics, 1979,44(2):185-194.
doi: 10.1190/1.1440960
[1] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[2] 黄远生, 王彦国, 罗潇. 基于归一化磁源强度垂向差分的磁源参数快速估计方法[J]. 物探与化探, 2021, 45(6): 1588-1596.
[3] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[4] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[5] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[6] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[7] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[8] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[9] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[10] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[11] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[12] 李凡, 周明, 李开天, 鲁恺, 李振宇. 单斜地形情况下的磁共振测深方法反演研究[J]. 物探与化探, 2021, 45(3): 712-725.
[13] 李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
[14] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[15] 孟军海, 马龙, 王金海, 赵丽萍, 王丽君, 付强, 童明慧. 重力数据在德令哈地区区域性综合解释中的开发应用研究[J]. 物探与化探, 2021, 45(2): 369-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com