Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (1): 189-198    DOI: 10.11720/wtyht.2019.1216
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于最佳小波基的地震面波插值方法
王志农1, 孙成禹1, 伍敦仕2
1. 中国石油大学 地球科学与技术学院,山东 青岛 266580
2. 中国石油勘探开发研究院 西北分院, 甘肃 兰州 730020
Seismic surface wave interpolation method based on optimistic wavelet basis
Zhi-Nong WANG1, Cheng-Yu SUN1, Dun-Shi WU2
1. School of Geosciences,China University of Petroleum,Qingdao 266580,China
2. PetroChina Research Institute of Petroleum Exploration and Development-Northwest,Lanzhou 730020,China
全文: PDF(6166 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在利用实际地震数据中的面波反演近地表横波速度的过程中,若道间距较大、空间采样率不足,则会产生空间假频现象,从而降低频率速度谱的信噪比,影响频散曲线提取的精度以及反演效果,因此需要针对面波进行插值处理。文中提出了一种基于最佳小波基的地震面波插值方法,通过理论分析和实验误差对比在地震数据处理常用的众多小波基中选出适用于插值处理的最佳小波基bior6.8,提高了插值精度。针对面波同向轴为线性且斜率较大的特点,文中首先采用线性动校正的方法对面波进行拉平处理,再进行小波变换插值,最后进行反线性动校正恢复面波。通过对理论模型与实际资料进行插值处理验证了本文方法的有效性,插值后的面波记录波形恢复较好,显著提高了频率速度谱的信噪比,有效解决了面波数据空间采样率不足引起的假频问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志农
孙成禹
伍敦仕
关键词 面波插值小波变换最佳小波基频率速度谱空间假频    
Abstract

The surface wave in the real seismic data can be used to invert near surface shear velocity.If the trace interval is large and the spatial sampling rate is not enough,there will be spatial aliasing.This can not only decrease the signal-to-noise ratio of frequency-velocity spectra but also affect the accuracy of dispersion curves and the result of inversion.So it is necessary to do the interpolation of surface wave.This paper presents a seismic surface wave interpolation method based on optimistic wavelet basis.The optimistic wavelet basis bior6.8 which is suitable for interpolation processing can be selected among many wavelet bases commonly used in seismic data processing through the theoretical analysis and the comparison of experimental error.The use of optimistic wavelet basis bior6.8 will increase the accuracy of interpolation.Because the events of surface wave are linear and the slopes of them are larger,this paper uses the linear normal moveout to level the events of surface wave firstly,then carries out the wavelet transform interpolation,and finally uses the inverse linear normal moveout to recover the surface wave.The effectiveness of the proposed method is verified by the interpolation result of theoretical model and real seismic data.After the interpolation,the waveform of the interpolated surface wave records is well recovered. It can improve the signal-to-noise ratio of frequency-velocity spectra,and solve the aliasing problem effectively caused by the undersampling of the surface wave data.

Key wordssurface wave interpolation    wavelet transform    optimistic wavelet basis    frequency-velocity spectrum    spatial aliasing
收稿日期: 2018-06-04      出版日期: 2019-02-20
:  P631.4  
基金资助:国家自然科学基金项目(41874153);国家自然科学基金项目(41504097);国家科技重大专项(2016ZX05006-002-03)
通讯作者: 孙成禹
作者简介: 王志农(1995-),男,硕士研究生,主要从事地震面波处理及反演研究工作。
引用本文:   
王志农, 孙成禹, 伍敦仕. 基于最佳小波基的地震面波插值方法[J]. 物探与化探, 2019, 43(1): 189-198.
Zhi-Nong WANG, Cheng-Yu SUN, Dun-Shi WU. Seismic surface wave interpolation method based on optimistic wavelet basis. Geophysical and Geochemical Exploration, 2019, 43(1): 189-198.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1216      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I1/189
Fig. 1  二级小波变换示意
Fig.2  小波变换面波插值流程
Fig.3  最佳小波基bior6.8插值结果
a—原始记录;b—抽道记录;c—插值记录;d—插值误差
Fig.4  三类小波基插值误差对比
a—db类小波基误差;b—sym类小波基误差;c—bior类小波基误差
Fig.5  bior6.8小波基
a—分解尺度函数;b—分解小波函数;c—重构尺度函数;d—重构小波函数
Fig.6  bior6.8小波基对应的滤波器
a—分解低通滤波器;b—分解高通滤波器;c—重构低通滤波器;d—重构高通滤波器
Fig.7  抽道前后地震记录及频率波数谱
a—原始记录;b—原始记录对应频率波数谱;c—抽道记录;d—抽道记录对应频率波数谱
Fig.8  用于二维小波逆变换的四个子带
a—低频近似部分;b—水平方向的高频估计;c—垂直方向的高频估计;d—对角线方向的高频估计
Fig.9  插值结果及其频率波数谱
a—插值结果;b—频率波数谱
Fig.10  原始记录和插值结果的第61道波形对比
Fig.11  频率速度谱对比
a—原始记录频率速度谱;b—抽道记录频率速度谱;c—插值结果频率速度谱
Fig.12  插值前后地震记录
a—原始记录;b—插值结果
Fig.13  频率速度谱对比
a—原始记录频率速度谱;b—插值结果频率速度谱
[1] Park C B, Miller R D, Xia J . Multichannel analysis of surface waves[J]. Geophysics, 1999,64(3):800-808.
doi: 10.1190/1.1444590
[2] Socco L V, Foti S, Boier O D . Surface-wave analysis for building near-surface velocity models-established approaches and new perspectives[J]. Geophysics, 2010,75(5):A83-A102.
[3] 伍敦仕, 孙成禹, 林美言 . 基于频率—速度域多重信号分类的面波高分辨率频散成像方法[J]. 石油物探, 2017,56(1):141-149.
doi: 10.3969/j.issn.1000-1441.2017.01.016
[3] Wu D S, Sun C Y, Lin M Y . High resolution dispersion imaging of surface waves based on signal classification in frequency-velocity domain[J]. Geophysical Prospecting for Petroleum, 2017,56(1):141-149.
[4] 夏江海, 高玲利, 潘雨迪 , 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015,58(8):2591-2605.
doi: 10.6038/cjg20150801
[4] Xia J H, Gao L L, Pan Y D , et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015,58(8):2591-2605.
[5] 姜福豪, 李培明, 张翊孟 , 等. 多道面波频散分析在实际大炮数据中的应用[J]. 石油地球物理勘探, 2018,53(1):17-24.
doi: 10.13810/j.cnki.issn.1000-7210.2018.01.003
[5] Jiang F H, Li P M, Zhang Y M , et al. Frequency dispersion analysis of MASW in real seismic data[J]. Oil Geophysical Prospecting, 2018,53(1):17-24.
[6] 国九英, 周兴元, 俞寿朋 . F-X域等道距道内插[J]. 石油地球物理勘探, 1996,31(1):28-34.
[6] Guo J Y, Zhou X Y, Yu S P . Iso-interval trace interpolation in F-X domain[J]. Oil Geophysical Prospecting, 1996,31(1):28-34.
[7] 国九英, 周兴元 . F-K域等道距道内插[J]. 石油地球物理勘探, 1996,31(2):211-218.
[7] Guo J Y, Zhou X Y . Iso-spaced trace interpolation in F-K domain[J]. Oil Geophysical Prospecting, 1996,31(2):211-218.
[8] 周聪, 刘江平, 曾祥芝 , 等. 小波变换在面波插值中的应用[J]. 中南大学学报:自然科学版, 2012,43(11):4395-4403.
[8] Zhou C, Liu J P, Zeng X Z , et al. Application of wave transform on Rayleigh wave onterpolation[J]. Journal of Central South University:Science and Technology, 2012,43(11):4395-4403.
[9] 李庆忠 . 地震信号内插与噪声剔除(一)[J]. 地球物理学报, 1987,30(5):514-531.
doi:
[9] Li Q Z . Seismic signal interpolation and noise deletion(1)[J]. Chinese Journal of Geophysics, 1987,30(5):514-531.
[10] 李庆忠 . 地震信号内插与噪声剔除(二)[J]. 地球物理学报, 1988,31(3):329-341.
doi:
[10] Li Q Z . Seismic signal interpolation and noise deletion(2)[J]. Chinese Journal of Geophysics, 1988,31(3):329-341.
[11] Spitz S . Seismic trace interpolation in the f-x domain[J]. Geophysics, 1991,56(6):785-794.
doi: 10.1190/1.1443096
[12] Wang Z L, Li Y D. Trace interpolation using wavelet transform [C]//Expanded Abstracts of the 64 th Annual SEG Meeting.Los Angles:Society of Exploration Geophysicists , 1994,13:729-730.
[13] Hindriks C O H, Schonewille M A, Duijndam A J W. Efficient reconstruction of irregularly sampled seismic data in two dimensions [C]//The 58 th Conference of the EAGE , 1996.
[14] Duijndam A J W, Schonewille M A, Hindriks C O H . Reconstruction of band-limited signals,irregularly sampled along one spatial direction[J]. Geophysics, 1999,64(2):524-538.
doi: 10.1190/1.1444559
[15] 高静怀, 汪文秉, 朱光明 , 等. 地震资料处理中小波函数的选取研究[J]. 地球物理学报, 1996,39(3):392-400.
doi:
[15] Gao J H, Wang W B, Zhu G M , et al. On the choice of wavelet functions for seismic data processing[J]. Chinese Journal of Geophysics, 1996,39(3):392-400.
[16] 王西文, 高静怀, 李幼铭 . 高分辨地震资料处理中导数小波函数的构造[J]. 石油物探, 2000,39(2):64-71.
doi: 10.3969/j.issn.1000-1441.2000.02.007
[16] Wang X W, Gao J H, Li Y M . Construction of derivative wavelet function in high resolution seismic data processing[J]. Geophysical Prospecting for Petroleum, 2000,39(2):64-71.
[17] 王西文, 刘全新, 高静怀 , 等. 地震资料在小波域的分频处理与重构[J]. 石油地球物理勘探, 2001,36(1):78-85.
doi: 10.3321/j.issn:1000-7210.2001.01.012
[17] Wang X W, Liu Q X, Gao J H , et al. Frequency-shared processing and reconstitution of seismic data in wavelet domain[J]. Oil Geophysical Prospecting, 2001,36(1):78-85.
[18] Porsani M J . Seismic trace interpolation using half-step prediction filters[J]. Geophysics, 1999,64(5):1461-1467.
doi: 10.1190/1.1444650
[19] Herrmann F. Optimal seismic imaging with curvelets [C]//Expanded Abstracts of the 69 th Annual SEG Meeting,Society of Exploration Geophysicists , 2003.
[20] Herrmann F. Curvelet imaging and processing:an overview [C]//CSEG National Convention, 2004.
[21] Hennenfent G, Herrmann F, Neelamani R. Sparseness-constrained seismic deconvolution with curvelets [C]//CSEG Annual Conference Proceedings, 2005.
[22] Candes E, Demanet L, Donoho D . Fast discrete curvelet transforms[J]. Multiscale Modeling and Simulation, 2006,5(3):861-899.
doi: 10.1137/05064182X
[23] Donoho D . Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
doi: 10.1109/TIT.2006.871582
[24] 张华, 陈小宏, 杨海燕 . 地震信号去噪的最优小波基选取方法[J]. 石油地球物理勘探, 2011,46(1):70-75.
doi:
[24] Zhang H, Chen X H, Yang H Y . Optimistic wavelet basis selection in seismic signal noise elimination[J]. Oil Geophysical Prospecting, 2011,46(1):70-75.
[25] Nazari Siahsar M A, Gholtashi S, Abolghasemi V , et al. Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning[J]. Signal Processing, 2017,6(17):309-321.
[26] Kim B, Jeong S, Byun J , et al. An efficient interpolation approach for insufficient 3D field data[J]. Exploration Geophysics, 2018,49(1):58-67.
doi: 10.1071/EG16105
[1] 杨丹, 李伟, 魏永梁, 宋斌. 双树复小波变换在川藏铁路拉林段某隧道超前地质预报中的应用[J]. 物探与化探, 2021, 45(6): 1504-1511.
[2] 夏红敏, 郑小文, 黄捍东, 肖炎辉, 董金超, 廖俊. 基于去低频化的低幅度构造识别方法研究及应用[J]. 物探与化探, 2021, 45(4): 998-1003.
[3] 谭沛森. 多源重力数据融合方法及其在南海的应用[J]. 物探与化探, 2018, 42(1): 104-110.
[4] 牟力, 陈召曦. 重力资料多尺度分析最优小波基的选择[J]. 物探与化探, 2015, 39(5): 1013-1019.
[5] 王超, 沈斐敏. 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015, 39(2): 421-424.
[6] 尚世贵. 小波变换在磁异常分离中的应用——以安徽庐枞矿集区小包庄铁矿床为例[J]. 物探与化探, 2014, 38(6): 1119-1123.
[7] 区小毅. 利用小波变换压制静态效应的方法[J]. 物探与化探, 2014, 38(6): 1222-1227.
[8] 张振波, 轩义华. 高分辨率抛物线拉冬变换多次波压制技术[J]. 物探与化探, 2014, 38(5): 981-988.
[9] 陈明. 广东地区矿床密集区的重力异常分析[J]. 物探与化探, 2014, (3): 465-470.
[10] 刘彩云, 姚长利. 连续小波变换识别位场场源法的噪声影响分析与尺度因子的选择[J]. 物探与化探, 2014, (3): 527-533.
[11] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[12] 赵汝敏, 柏冠军, 李培培. 超道相干体技术在复杂断块断裂解释中的应用[J]. 物探与化探, 2013, 37(5): 942-946.
[13] 赵莹. 小波分析在松辽盆地北部高分辨率层序地层学中的应用[J]. 物探与化探, 2013, 37(2): 310-313.
[14] 李雪英, 张晶, 孔祥琦, 侯相辉. 基于离散小波变换的地震资料自适应高频噪声压制[J]. 物探与化探, 2013, 37(1): 165-170.
[15] 黄雪继, 刘来祥, 王永胜. 分频径向道中值滤波在地震资料处理中的应用[J]. 物探与化探, 2012, 36(2): 317-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com