Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 997-1002    DOI: 10.11720/wtyht.2019.1142
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验
王长城
河北省地矿局 第四水文工程地质大队,河北 沧州 061000
A tentative test on the magnetotelluric sounding method for rapid evaluation of the metallogenic prospective area for Cenozoic basin salt deposits
Chang-Cheng WANG
No. 4 Hydrology and Geological Engineering Party, Hebei Geological and Mineral Resource Exploitation Bureau, Cangzhou 061000, China
全文: PDF(2016 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

含石膏、石盐、钾盐在内的盐岩由海水或者湖水经蒸发依次在盆地的沉降中心结晶沉积,矿体埋深多在0~4 000 m。目前评价盆地成矿远景区的方法多使用重力勘查与钻探、二维地震与钻探组合,其施工成本较高、周期较长。为快速评价含盐盆地的成矿远景,本文以研究程度很高的新生代渤海湾盆地高家堡构造为实验区,在已经钻探资料的约束下开展大地电磁测深法应用于评价盐类矿床的研究工作,发现大地电磁测深法获得的低阻中心与石盐分布区对应良好,低阻体反映了石盐的沉积中心,初步提出大地电磁测深法与钻探的组合可用于快速地评价新生代盆地的盐类矿床成矿远景区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王长城
关键词 大地电磁测深法盐类矿床成矿远景区新生代成盐盆地    
Abstract

The rock salt containing gypsum, halite and sylvite has experienced crystallization and deposition successively at the subsidence center of the basin through the evaporation of sea water or lake water, and the burial depths are mostly at 0~4 000 m. At present, the methods of evaluating the metallogenic prospective area of the basin are mainly composed of gravity exploration and drilling combination and two-dimensional earthquake and drilling combination, whose construction cost is relatively high and the working cycle is relatively long. In order to rapidly evaluate the ore-forming prospective of the salt-bearing basin, the authors chose the Gaojiabao structure in the Cenozoic Bohai Sea Gulf whose study level has been very high as the experiment area and, constrained by drilling data available, carried out the study of applying magnetotelluric sounding method to evaluating salt type deposits. It is found that the low-resistivity center obtained by the magnetotelluric sounding method is quite consistent with the rock salt distribution area, and the low-resistivity body reflects the depositional center of the rock salt. The authors tentatively hold that the combination of magnetotelluric sounding method and drilling can rapid evaluate the ore-forming prospective area of salt type deposits in the Cenozoic basin.

Key wordsmagnetotelluric sounding method    mineralization area of the salt deposit    Cenozoic    salt-forming basin
收稿日期: 2018-03-30      出版日期: 2019-10-25
:  P631  
基金资助:河北省地质矿产勘查局项目“河北省任丘市苟各庄石盐资源评价”(冀地地审[2013]15号文)
作者简介: 王长城(1965-),男,硕士,地球物理勘查高级工程师,从事物探、地质灾害防治与行政管理工作。
引用本文:   
王长城. 大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验[J]. 物探与化探, 2019, 43(5): 997-1002.
Chang-Cheng WANG. A tentative test on the magnetotelluric sounding method for rapid evaluation of the metallogenic prospective area for Cenozoic basin salt deposits. Geophysical and Geochemical Exploration, 2019, 43(5): 997-1002.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1142      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/997
Fig.1  试验区钻孔及大地电磁测深点分布
岩性 电阻率/(Ω·m) 岩性 电阻率/(Ω·m)
泥岩 11~32 钙质泥岩 66~85
粉砂岩 11~21 石膏岩 200~400
砂岩 15~35 岩盐 300~800
泥页岩 28~52
Table 1  邻区(黄骅台陷)岩心电阻率统计结果
Fig.2  试验区含盐岩地层电阻率测井曲线
Fig.3  试验区3 000 m深电阻率切片图
Fig.4  不同深度切面10 Ω·m电阻率等值线及解释示意
[1] 马庆元 . 舞阳凹陷石盐矿床的地质特征[J]. 河南地质, 1993,11(4):254-261.
[1] Ma Q Y . Geological characteristics of stone salt deposits in Wuyang depression[J]. Henan Geology, 1993,11(4):254-261.
[2] 谢小国, 罗兵, 欧晓平 , 等. 可可西里古近系石盐测井评价方法研究[J]. 盐湖研究, 2017,25(4):1-7.
[2] Xie X G, Luo B, Ou X P , et al. Research on logging evaluation method of the Paleogene halite in Hoh Xil area[J]. Journal of Salt Lake Research, 2017,25(4):1-7.
[3] 伯英, 曹养同, 刘成林 , 等. 新疆库车盆地盐泉水化学特征、来源及找钾指示意义[J]. 地质学报, 2015,89(11):1936-1944.
[3] Bo Y, Cao Y T, Liu C L , et al. Chemical characteristics and origin of saline springs and their significance to potash prospecting in the Kuqa basin, Xinjiang[J]. Acta Geologica Sinica, 2015,89(11):1936-1944.
[4] 王国华 . 甘肃省漳县盐矿地质特征及其成因[J]. 甘肃科技, 2016,32(14):38-41.
[4] Wang G H . Geological characteristics and genesis of salt deposits in Zhangxian, Gansu Province[J]. Gansu Science and Technology, 2016,32(14):38-41.
[5] 唐忠驭 . 三水盆地隔坑盐岩矿开发前景[J]. 中国井盐矿, 1992,( 5):10-12.
[5] Tang Z Y . Development prospect of gekeng salt rock mine in Sanshui basin[J]. China Well and Rock Salt, 1992, ( 5):10-12.
[6] 吴进飞, 何金先, 周绍荣 , 等. 金坛盆地云林凹陷古近系阜宁组石盐矿缺失原因研究[J]. 矿产与地质, 2016,30(4):633-639.
[6] Wu J F, He J X, Zhou S R , et al. Causes of absence of common Salt Deposit in Paleogene Funing Formation of Yunlin sag in Jintan basin[J]. Mineral resouces and Geology, 2016,30(4):633-639.
[7] 杜海峰, 于兴河, 陈发亮 . 河南省东濮凹陷古近系沙河街组沙三段盐岩沉积特征及其石油地质意义[J]. 古地理学报, 2008,10(1):53-62.
doi: 10.7605/gdlxb.2008.01.006
[7] Du H F, Yu X H, Chen F L . Sedimentary characteristics of Salt Rocks and their Petroleum geological significance of the Member 3 of Shahejie Formation of Paleogene in Dongpu Sag, Henan Province[J]. Journal of Palaeogeography, 2008,10(1):53-62.
[8] 王春连, 刘成林, 胡海兵 , 等. 江汉盆地江陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境意义[J]. 古地理学报, 2012,14(2):165-175.
doi: 10.7605/gdlxb.2012.02.003
[8] Wang C L, Liu C L, Hu H B , et al. Sedimentary characteristics and its environmental significance of salt-bearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression,Jianghan Basin[J]. Journal of Palaeogeography, 2012,14(2):165-175.
[9] 宋金保, 高亮 . 宁晋-辛集石盐田石盐矿床特征及其成因探讨[J]. 能源与环保, 2017,39(11):131-134.
[9] Song J B, Gao L . Characteristics and genesis of halite deposit in Ningjin-Xinji halite field[J]. China Energy and Environmental Protection, 2017,39(11):131-134.
[10] 马艳军, 董兆全, 王建辉 , 等. 河北省沧县石盐矿矿床地质特征及找矿标志[J]. 中国井矿盐, 2014,45(3):27-29.
[10] Ma Y J, Dong Z Q, Wang J H , et al. Geological characteristics of rock salt mine ore deposit and prospecting marks in Hebei Cangxian County[J]. China Well and Rock Salt, 2014,45(3):27-29.
[11] 段建华, 路耀祖 . 重力测量在老挝万象盆地固体钾盐矿勘查中的有效性分析[J]. 盐湖研究, 2017,25(3):1-8.
[11] Duan J H, Lu Y Z . The effectiveness of gravimetric for solid potash ore exploration in Vientiane basin of Laos[J]. Journal of Salt Lake Research, 2017,25(3):1-8.
[12] 王元昊, 石国成, 叶成 . 地球物理测井在老挝钾盐矿勘查中的应用[J]. 价值工程, 2016,( 12):180-182.
[12] Wang Y H, Shi G C, Ye C . Application of geophysical well logging in Laos Potash deposit exploration[J]. Value Engineering, 2016, ( 12):180-182.
[13] 李玉琪, 张旋, 赵梓蓉 . 对华北油田勘探历程的再认识[J]. 西安石油大学学报:社会科学版, 2014,23(6):25-32.
[13] Li Y Q, Zhang X, Zhao Z R . Reconsideration on the exploration History of Huabei Oilfield[J]. Journal of Xi’an Shiyou University(Social Science Edition), 2014,23(6):25-32.
[14] 潘雯丽, 田建章, 张玉娥 , 等. 霸县凹陷南洼槽沉积相研究及岩性地层圈闭识别[J].石油地质, 2010(2):33-41.
[14] Pan W L, Tian J Z, Zhang Y E , et al. Research on sedimentary facies and identification of lithostratigraphic traps in Baxian southern subsag[J]. Petroleum Geology, 2010 ( 2):33-41.
[15] 郝国江, 董杰, 梅新忠 , 等. 河北省区域岩石电性统计特征[J]. 物探与化探, 2001,25(5):336-342.
[15] Hao G J, Dong J, Mei X Z , et al. Statistical characteristics of regional rock electrical properties in Hebei Province[J]. Geophysical & Geochemical Exploration, 2001,25(5):336-342.
[16] 王庆乙, 徐立忠 . 加拿大GDD公司生产的SCIP岩芯测试仪存在问题的商榷[J]. 矿产勘查, 2012,3(3):411-413.
[16] Wang Q Y, Xu L Z . Discussion on the core tester SCIP system manufactured by Instrumentation GDD in Canada[J]. Mineral Exploration, 2012,3(3):411-413.
[17] 孟庆生, 佟雪, 郑西来 , 等. 大沽河咸水入侵区氯离子浓度、矿化度与地层电阻率关系实验研究[J]. 中国海洋大学学报, 2015,45(5):87-92.
[17] Meng Q S, Tong X, Zheng X L , et al. An experimental investigation of relationship of chloride concentration and mineralization with resistivity in saltwater intrusion zone of Dagu river[J]. Periodical of Ocean University of China, 2015,45(5):87-92.
[18] 王辉, 魏文博, 金胜 , 等. 基于同步大地电磁时间序列依赖关系的噪声处理[J]. 地球物理学报, 2014,57(2):531-545.
doi: 10.6038/cjg20140218
[18] Wang H, Wei W B, Jin S , et al. Removal of magnetotelluric noise based on synchronous time series relationship[J]. Chinese Journal of Geophysics, 2014,57(2):531-545.
[19] 杨时中, 刘东方, 郑国光 , 等. 冀中坳陷下第三系生物相带的划分及其意义[J]. 石油学报, 1992,13(2):51-59.
[19] Yang S Z, Liu D F, Zheng G G , et al. The division of Biofacies in Paleogene in Jizhong Depressiona and its Significance[J]. Acta Petrolei Sinica, 13(2):51-59.
[1] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[2] 方慧, 裴发根, 何梅兴, 白大为, 胡祥云, 钟清, 杜炳锐, 张小博, 卢景奇. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017, 41(6): 1068-1074.
[3] 高远, 董旭, 申建平. 大地电磁测深法在慈页1井定位中的应用[J]. 物探与化探, 2017, 41(4): 689-693.
[4] 麻昌英, 柳建新, 孙娅, 刘海飞. 高频大地电磁测深法与双频激电法在水文地质调查中的应用[J]. 物探与化探, 2015, 39(5): 944-947.
[5] 刘建利. 大地电磁测深法阻抗相位的特性与应用[J]. 物探与化探, 2013, 37(1): 73-77.
[6] 徐新学. 大地电磁测深法在深部矿产资源调查中的应用[J]. 物探与化探, 2011, 35(1): 17-19.
[7] 李国占, 孙银行. 地下水地球物理勘查技术模式[J]. 物探与化探, 2010, 34(2): 202-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com